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Network planning with deep reinforcement learning 
(Zhu et al., 2020)

Chip Placement with Deep Reinforcement Learning
(Mirhoseini et al., 2020)

Reinforcement learning for molecular design 
guided by quantum mechanics (Simm et al., 2020)
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reward

Learning from trial and error

Reinforcement Learning



Markov Decision Process (MDP): 

Reinforcement Learning



Goal: Policy that maximizes cumulative reward

policy

Reinforcement Learning
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Reinforcement learning is very data hungry

Sampling is slow and there is a real world cost to low reward states



Not all data is unique!
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Some Background



Examples:

A set with a binary operation obeying the group axioms

(identity, invertibility, closure, associativity)
Figures from Daniel Worrall’s MLSS slides

Translations Reflections Rotations

What is a group?



and                  are symmetric state-action pairs and have the same 

Symmetries in Reinforcement Learning

For all states and actions, and all group elements:

Dynamics are invariant under group transformations

(Ravindran & Barto 2004)



Equivariance

f ( g x ) = g’ f ( x ) 

Figures adapted from Daniel E. Worrall
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MDP Homomorphic Networks:
Group Symmetries in Reinforcement Learning

Elise van der Pol     ᐧ Daniel E. Worrall     ᐧ Herke van Hoof     ᐧ Frans A. Oliehoek     ᐧ Max Welling



Homomorphism

Structure-preserving map between similar algebraic structures such that  

Examples:

Linear map between vector spaces

Exponential function between the reals and the positive reals

Group representation between a group and the general linear group



Map ground MDP → abstract MDP, preserve dynamics (Ravindran & Barto 2001)

MDP Homomorphisms

MDP Homomorphism

and                are symmetric state-action pairs and have the same

Abstract/Reduced MDPGround/Original MDP



MDP Homomorphic Networks: 
Group Symmetries in Reinforcement Learning

(van der Pol, Worrall, van Hoof, Oliehoek & Welling, NeurIPS 2020)



MDP Homomorphic Networks: 
Group Symmetries in Reinforcement Learning

(van der Pol, Worrall, van Hoof, Oliehoek & Welling, NeurIPS 2020)



Symmetric (s, a) pairs have the same policy       :

is a transformation on states,      a transformation on policies 

MDP Homomorphic Networks: 
Group Symmetries in Reinforcement Learning

(van der Pol, Worrall, van Hoof, Oliehoek & Welling, NeurIPS 2020)



Symmetric (s, a) pairs have the same policy       :

is a transformation on states,      a transformation on policies 

MDP homomorphic networks exploit symmetries in reinforcement learning

MDP Homomorphic Networks: 
Group Symmetries in Reinforcement Learning

(van der Pol, Worrall, van Hoof, Oliehoek & Welling, NeurIPS 2020)



We bridge MDP homomorphisms and equivariant networks

MDP Homomorphic Networks



MDP Homomorphic Networks

Problem with symmetries Reduced problem

MDP Homomorphism
We bridge MDP homomorphisms and equivariant networks



MDP Homomorphic Networks

We create deep networks constrained by MDP homomorphisms that enforce equivariance

We bridge MDP homomorphisms and equivariant networks



We bridge MDP homomorphisms and equivariant networks

MDP Homomorphic Networks

We create deep networks constrained by MDP homomorphisms that enforce equivariance

We introduce a new method, the Symmetrizer, to construct equivariant weights



Cartpole
2 element symmetry group

Grid World
4 element symmetry group

Pong
2 element symmetry group

Fewer interactions with the world needed

MDP Homomorphic Networks

x 10000



Conclusion

Fewer interactions needed to obtain good policies with MDP Homomorphic networks

Useful in reinforcement learning problems that exhibit group symmetry

Symmetrizer: automatically constructs equivariant layers



Multi-Agent MDP Homomorphic Networks

Elise van der Pol     ᐧ Herke van Hoof     ᐧ Frans A. Oliehoek     ᐧ Max Welling



Cooperative Multi-Agent Systems



Setting: Centralized Training, Distributed execution

Centralized controller: puppeteer agent



Setting: Centralized Training, Distributed execution

communication

communication

communication communication

Centralized controller: puppeteer agent Distributed controllers: local



Global symmetries in multi-agent decision problems

Equivariance constraint on global states and joint policies.



Global symmetries in multi-agent systems

Equivariance to group symmetries: successful in single agent RL 

Local equivariance ≠ global equivariance

Single agent approaches: only applicable with centralized controllers



Use global symmetries with only local communication & local computation

Local equivariance constraints allow for distributed global symmetry.

Multi-Agent MDP Homomorphic Networks

communication

communication

communication communication

(van der Pol, van Hoof, Oliehoek & Welling, ICLR 2022)



Distributed Execution in Message Passing Networks



Distributed Execution in Message Passing Networks

Encode



Distributed Execution in Message Passing Networks

Messages

Encode



Distributed Execution in Message Passing Networks

Messages

Encode

Aggregation



Distributed Execution in Message Passing Networks

Messages

Encode

Aggregation

Node Update



Distributed Execution in Message Passing Networks

Messages

Aggregation

Node Update

Encode

Policy



Distributed Execution in Message Passing Networks

Messages

Encode

Policy

Require only local information + local communication at execution time.

Aggregation

Node Update



Globally Equivariant Distributed Execution

Messages

Encode

Policy

Aggregation

Node Update



Globally Equivariant Distributed Execution

Messages

Encode

Equivariance constraint on encoder

Policy

Aggregation

Node Update



Globally Equivariant Distributed Execution

Messages

Encode

Equivariance constraint on messages

Equivariance constraint on encoder

Policy

Aggregation

Node Update



Globally Equivariant Distributed Execution

Messages

Encode

Equivariance constraint on messages

Equivariance constraint on node updates

Equivariance constraint on encoder

Policy

Aggregation

Node Update



Globally Equivariant Distributed Execution

Encode

Equivariance constraint on encoder

Policy
Equivariance constraint on local policies

Messages Equivariance constraint on messages

Equivariance constraint on node updates

Aggregation

Node Update



Globally Equivariant Distributed Execution

Local equivariance constraints allow for distributed global symmetry.

Encode

Equivariance constraint on encoder

Policy
Equivariance constraint on local policies

Messages Equivariance constraint on messages

Equivariance constraint on node updates

Aggregation

Node Update



Experiments

Wildlife monitoring Traffic Light Control 



Evaluation

M

Multi-agent MDP Homomorphic Networks: improved data efficiency

Symmetry by equivariance improves over symmetry by augmentation

Wildlife monitoring (↑)
(grid world coordination)

Traffic Light Control (↓)
(coordination, congestion)



Conclusion

Global symmetry equivariance with only local communication & local computation

Including symmetry information helps with data efficiency, especially equivariance



Equivariant Networks for Zero-Shot Coordination

Darius Muglich    ᐧ Christian Schroeder de Witt    ᐧ Elise van der Pol    ᐧ Shimon Whiteson ᐧ Jakob Foerster



51

Lever Game

Image: Hu et al., 2020

Which lever to choose if you don’t know your partner’s decision making strategy?
(+ you cannot discuss: zero-shot coordination)

Problem of mutually incompatible symmetry-breaking

“Other-Play” for Zero-Shot Coordination (Hu et al., 2020)

Payoff if you and random, unseen partner choose same lever
Which lever should you choose?



Quick overview: Equivariant Networks for Zero-Shot Coordination

Lever game: mutually incompatible symmetry breaking in zero-shot coordination

Equivariant networks: exactly solve the symmetry breaking problem

Symmetrizing agents: empirical improvement on Hanabi challenge

Details, results, and proofs in the paper:

Equivariant Networks for Zero-Shot Coordination (Muglich et al., 2020)



Geometry: everywhere in decision making

MDP homomorphic networks: fewer interactions needed in single and multi agent settings
→ Improve zero-shot coordination out of the box

Recent followup work & applications:

Sample Efficient Grasp Learning Using Equivariant Models 
(Zhu et al., 2022) EqR: Equivariant Representations for Data-Efficient Reinforcement Learning 

(Mondal et al., 2022)

Continuous MDP Homomorphisms and Homomorphic Policy Gradient
(Rezaei-Shoshtari et al., 2022)

Symmetry-Aware Actor-Critic for 3D Molecular Design 
(Simm et al., 2020)



AI4Science



Catalysis

Catalyst: substance that increases the rate of a chemical reaction without being consumed.

Catalysis: underpins 30% of the gross domestic product of the European economy [1].

[1] “Catalysis making the world a better place”, Catlow et al, 2016, https://doi.org/10.1098/rsta.2015.0089

Clean water Clean air Clean energy Sustainable food

https://doi.org/10.1098/rsta.2015.0089


Computational Chemistry

Branch of theoretical chemistry: Computer simulations to solve chemistry problems

● Design new catalysts, materials, drugs, etc.
● Predict properties/outcomes of chemical reactions

Most accurate methods are only feasible for very small systems.

→ Trade-off between computational cost and accuracy

AI4Science: Machine learning approaches



Machine Learning for Chemistry

Neural Network Energy

Neural Network Place an atom of type T at (x,y,z)

Neural Network Toxicity

?

?

?



De Novo Design via RL/Planning

Goal: Construct Molecules with desirable properties via scoring function.

Reward: domain specific score for molecule given at stop action, else 0.
3D design: highly rotation symmetric.
Applications: drug design, batteries, catalysts.

Some work in this space:
• De Novo Drug Design Using Reinforcement Learning with Graph-Based Deep Generative Model (Atance et al., 2022)
• Molecular de-novo design through deep reinforcement learning  (Olivecrona et al., 2017)
• Symmetry-aware actor-critic for 3D Molecular design (Simm et al., 2020)
• Generating Focussed Molecule Libraries for Drug Discovery with Recurrent Neural Networks (Segler et al., 2017)

𝑠0 𝑠1 𝑠2 𝑠3

𝑎1 𝑎2 𝑎3 stop

Image Marwin Segler



Retrosynthesis Planning
Nice to be able to design molecules in silico!

But – no use if we cannot synthesize them!

Goal: 
Finding synthesis routes for target molecules

Image Austin Tripp



Retrosynthesis planning

Goal: Iteratively find buyable building blocks that react to desired product

Reward: successful route, minimizing cost, avoiding uncertain reactions, 
balanced route (branching vs linear), certain kinds of chemistry

Transitions: assumed known, but are they?
Some work in this space:
• Planning chemical syntheses with deep neural networks and symbolic AI (Segler et al., 2018)
• GRASP: Navigating Retrosynthetic Planning with Goal-driven Policy (Yu et al., 2022)
• RetroGraph: Retrosynthetic Planning with Graph Search (Xie et al., 2022)

RetroGraph: Retrosynthetic Planning with Graph Search (Xie et al., 2022)



Potential Energy Surface

● Surface described by a function 𝑓:ℝ3𝑁 → ℝ

● Input: 3D coordinates of 𝑁 atoms
● Output: an energy 𝑓 𝑥1, 𝑥2, ⋯ , 𝑥𝑁 = 𝐸

Local minima: stable configurations

Symmetric:
rotating the molecule → same energy

Image: Gregor Simm



Reaction modelling & prediction

1. Modelling reaction mechanisms:
○ Given a system of N atoms (point cloud of atoms in 3D) 
○ Find all the bond-changing stable configurations

2. Predicting reaction performance:
○ Given stable start and stable end configuration, predict reaction rate



Exploring Reaction Networks

Goal: Find all relevant minima of a potential energy surface

Reward: positive for interesting new minimum, 0 otherwise

Applications: reaction modelling e.g. in catalysis
3D point cloud: highly symmetric

Some work in this space:
• Exploring Potential Energy Surfaces Using Reinforcement Machine Learning (Mills et al., 2022)
• Discovering Catalytic Reaction Networks Using Deep Reinforcement Learning from First-Principles (Lan & An, 2021)
• Deep reinforcement learning for predicting kinetic pathways to surface reconstruction in a ternary alloy (Yoon et al., 2021)

Figure: Mills et al 2022



Challenges in “Decision Making 4Science”

● Continuous, high-dimensional state-action spaces
● Usually, we want generalization between systems
● It’s often difficult to specify the MDP
● We don’t usually have access to the real world
● Simulators are often inaccurate or expensive (sometimes both)
● Data efficiency very important

Many interesting fundamental challenges to be solved!

Potential for real, meaningful impact



Takeaways

● Many sequential decision making problems in science 
● Symmetry in decision making: improves data efficiency
● Symmetry and structure are everywhere in scientific problems
● Fundamental research with potential for meaningful impact
● Very exciting field to be working in!

Find me online: 

📧 evanderpol@microsoft.com

@ElisevanderPol     

🌐 elisevanderpol.nl

@elisevanderpol@sigmoid.social
https://physics4ml.github.io/

mailto:e.e.vanderpol@uva.nl
https://physics4ml.github.io/
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