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Pulling back information geometry




The set-up (Variational Autoencoders & geometry)

Applications of latent space geometry

Pulling back information geometry

Questions: anytime



The set-up
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The set-up

Learning latent representations



The set-up

Learning latent representations




The set-up

Learning latent representations
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Learning latent representations




The pullback metric.
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The pullback metric. In our set-up: f, is the decoder of a VAE.
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Curves that locally minimize length:
geodesics.




The pullback metric.

Formally
Informally
Givenacurvec: [0,1] = % and Def. A metric g tal.<e.s two tangent vectors
an immersion f,: Z — | D and computes their inner product.
1 . . .
Length[c] = J' H(fe° c)'(1)||dt Given an |mmerS|onf@: Z - (M, g),
_ Y we define a metric on Z given by
1
= L \/ c/(t)Ter(c(t))T]fe(c(t))c'(t) g f(Z)((df )Z(Vl)’ (df )Z(VZ))

Curves that locally minimize length:
geodesics.




The pullback metric.

Pro:

Con:

Distances are defined in data space
(i.e. invariant to reparametrizations)

We have to compute er(z)Ter(Z)
for a given likelihood




Variational Autoencoders

In our set-up: f, is the decoder of a VAE.
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Variational Autoencoders

In our set-up: f, is the decoder of a VAE.
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Variational Autoencoders

In our set-up: f, is the decoder of a VAE.




Encoder g(z| x) Decoder p(x| z)
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Variational Autoencoders

In our set-up: f, is the decoder of a VAE.




Decoder p(x| 2)

/
E)egending on the data, we can decode N /’tH(Z)
- Bernoulli (e.g. MNIST) { — fe
- Categorical (e.g. strings) N UQ(Z)
- Normal

\

Variational Autoencoders

In our set-up: f, is the decoder of a VAE.
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Likelihood: Gaussian.
fo(2) = up(2) + € © 04(2)*, € ~ N(0,I)

Our generator is stochastic...

LLATENT SPACE ODDITY
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Likelihood: Gaussian.

1(2) = py(2) + € © 6,(2)*, € ~ N(0,I)

Theorem 1:
E[J/2) THD] = J,(2) () + J(2) U (2)
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Likelihood: Gaussian.

1(2) = py(2) + € © 6,(2)*, € ~ N(0,I)

/ Our generator is stochastic...

— Ho(2) Theorem 1:
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Takeaway: uncertainties are important
LLATENT SPACE ODDITY




Takeaway: uncertainties are important

UQ(Z)

Input space Latent space

e latent repr.

0 3

Standard variance estimate

L | ¥

Unfortunately...

VAEs cdon’t have good uncertainty
quantification out-of-the-box

LLATENT SPACE ODDITY



Takeaway: uncertainties are important
0y(2)

Input space Latent space Standard variance estimate
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e latent repr.
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Proposed variance estimate

Ideally...
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Proposed variance estimate
Takeaway: uncertainties are important

How to calibrate the uncertainty?

o W o O

Overwrite 0,(z) like this

~ 0y(2) if zIs close to the training codes,
Op(Z) = _
¢ a large number otherwise.
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Proposed variance estimate
Takeaway: uncertainties are important |
Contrastive
Divergence |

How to calibrate the uncertainty?

Overwrite 0,(z) like this

~ { 04(2) if zis close to the training codes,
09 L) —

a large number otherwise. N
E[JH(2) "JA2)]

Volume before Volume after
StandarW l Proposed measure
=2

LLATENT SPACE ODDITY




Summary of the set-up

We learn latent representations using VAEs,

and use the decoder to pull back geometry




Summary of the set-up

The pullback metric is highly dependenton | |y (2\T7 () 4 ] (2)T] (7)
U o e

the likelihood we choose




Summary of the set-up

Uncertainty quantification is important, and ] = 0y(2)
g a large number

we currently do it by hand.




Some applications



Learning Riemannian Manifolds for
Geodesic Motion Skills
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Data: Demonstrations of a robot task

(p, 1) € R’ x S°

Goal: Learn a joint latent space, and
control through geodesics

|

Fig. 1: From demonstrations we learn a variational autoencoder that spans
a random Riemannian manifold. Geodesics on this manifold are viewed as
motion skills.

Learning Riemannian Manifolds for
Geodesic Motion Skills



Each point in latent space
corresponds to a robot arm
configuration

Goal: Learn ajoint latent space, and
control through geodesics

Learning Riemannian Manifolds for
Geodesic Motion Skills



Timestamp: 2:23

Goal: Learn ajoint latent space, and
control through geodesics

Learning Riemannian Manifolds for
Geodesic Motion Skills


https://www.youtube.com/watch?v=wyKVNmDoC2g

Data: Demonstrations of a robot task

(p,r) ER*X S? They learn a Gaussian for positions,

and a for rotations...
/—> ﬂg(Z) r~VMF(r|u,K) =>re s’
Po

\_> GH(Z)

L, (2)

— K
Learning Riemannian Manifolds for
Geodesic Motion Skills



Data: Demonstrations of a robot task
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Learning Riemannian Manifolds for
Geodesic Motion Skills



Data: Demonstrations of a robot task

(p, 1) E R’ x S3

— L Ho(Z)

P 0 The expected pullback metric also has
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Learning Riemannian Manifolds for
Geodesic Motion Skills



Article | Open Access | Published: 08 April 2022

Learning meaningful representations of protein
sequences
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Data:

Goal:

Protein sequences (i.e. strings)

Build meaningful representations

Learning meaningful representations of protein
sequences



Goal:

Build meaningful representations

(Geodesics follow the evolution of a protein family!*

Learning meaningful representations of protein
sequences



Data: Protein sequences (i.e. strings)

They train a VAE as you would for strings...

— probits p

N\
|
5
]
Softmax

Learning meaningful representations of protein
sequences



Data: Protein sequences (i.e. strings)

...Instead of pulling back the metric,
they minimize energy of curves.

N\
|
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]
Softmax

— probitsp  Energy[c] = )’ lIp,,; — pilI°
[




Summary of applications

Latent space geometries have been applied

to motion synthesis and protein modeling




Each choice of likelihood forces us to
compute new pullback metrics.

Summary of applications

J,(2)

JP(2) + J2(2)

JE(2)
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Pulling back information geometry




Gaussian vMF

Each choice of likelihood forces us to

compute new pullback metrics.

N

Categorical

Before PBIG



Gaussian Dirichlet vMF

Each choice of likelihood forces us to

compute new pullback metrics.

Beta Bernoull

Categorical
Gamma Many more!

After PBIG



Gaussian Dirichlet vMF

Each choice of likelihood forces us to

compute new pullback metrics.

Beta Bernoull

Categorical
Gamma Many more!

If you can sample from it differentially,

you can get a latent space geometry!




In all these applications, we
decoded to data space.

How?
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In all these applications, we What if we decode to
decoded to data space. parameter space?

How?



Def. Given a distribution p(x | 1),
we define its statistical manifold

(A, 1)

How?
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What if we decode to

parameter space?




Def. Given a distribution p(x | 1),
we define its statistical manifold

(;%9 I%)

Set of parameters

Fisher Information Matrix
(i.e. Fisher-Rao metric)

How?
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What if we decode to

parameter space?




Def. Given a distribution p(x | 7), T
we define its statistical manifold N P\

(A, 1) b

/ B A

Set of parameters

Fisher Information Matrix What if we decode to
(i.e. Fisher-Rao metric) parameter space?

I5(n) = [ [V, log p(x|n) V,log p(x|n) Ip(x|n)dx.
yA




|

£
2

) 2

P—— For the univariate Gaussian

H ={(u,0):uel

Gabriel Peyré
@gabrielpeyre

An example

,0 € |



Q: How do we pull back the Fisher-Rao metric?




Q: How do we pull back the Fisher-Rao metric?

A
H I f A- Proposition 3.1. The Fisher-Rao metric is the sec-
ond order approxrimation of the KL-divergence between
perturbed distributions:

KL(p(x|n), p(xln + 7)) = 5 6mTn (n)dn +0(617). (8)




Q: How do we pull back the Fisher-Rao metric?

A- Proposition 3.1. The Fisher-Rao metric is the sec-
ond order approximation of the KL-divergence between
perturbed distributions:

KL(p(x|n), p(xln+6m)) = 560" Lu(m)on-+o(677). (9

Computing local KL divergences is enough!

N—> 00

N-1
Energy[c] « lim )’ KL(p(x|c(t,)), p(x| c(t,41))
n=1



Q: How do we pull back the Fisher-Rao metric?

A- Proposition 3.1. The Fisher-Rao metric is the sec-
ond order approximation of the KL-divergence between
perturbed distributions:

KL(p(x|n), p(xln+6m)) = 560" Lu(m)on-+o(677). (9

Computing local KL divergences is enough!

N—-1
Easily minimized :
using e.q. toren  — Energylel o lim 2_‘; KL(p(x| c(t,)), pCx | c(t41)))
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We pull back the Fisher-Rao for

- Normal

7 — fé’ L 11,(2) - Dirichlet

\

- Bernoulli

- Exponential
- Beta

A toy experiment
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Beta Bernoulli Dirichlet

A toy experiment



Pulling back information geometry

LLATENT SPACE ODDITY
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Decoding to a Gaussian on MNIST(1

Comparing against Latent Space Oddity
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Human poses live on T" = S!x ... x S! (product of vMF)

On human poses



We consider parameter space
Instead of data space




| _ N-1
This allows us to define Z KL(p(x|c(t)), p(x| c(t,, 1))
n=1

black box latent geometries




Good uncertainty quantification
Is vital for latent geometries

Outlook - open problems



Good uncertainty quantification
Is vital for latent geometries

What does uncertain mean in
other distributions?

Outlook - open problems



Thanks! Any questions?



