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Length[c] = ∫
1

0
∥( fθ ∘ c)′ (t)∥dt

= …

= ∫
1

0
c′ (t)⊤Jfθ(c(t))⊤Jfθ(c(t))c′ (t)

The pullback metric.

Informally
Formally

Given a curve  and 
an immersion …

c : [0,1] → 𝒵
fθ : 𝒵 → ℝD

Given an immersion , 
we define a metric on  given by

fθ : 𝒵 → (M, g)
𝒵

gf(z)((df )z(v1), (df )z(v2))

Def. A metric  takes two tangent vectors 
and computes their inner product.

g

Curves that locally minimize length: 
geodesics.



The pullback metric.

Pro:

Con:

Distances are defined in data space 
(i.e. invariant to reparametrizations)

We have to compute  
for a given likelihood

Jfθ(z)⊤Jfθ(z)
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Variational Autoencoders

In our set-up:  is the decoder of a VAE.fθ

Depending on the data, we can decode 
to a


- Bernoulli (e.g. MNIST)


- Categorical (e.g. strings)


- Normal
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Theorem 1:

Likelihood: Gaussian.

fθ(z) = μθ(z) + ϵ ⊙ σθ(z)2, ϵ ∼ N(0,ID)

Our generator is stochastic…

𝔼[Jf(z)⊤Jf(z)] = Jμ(z)⊤Jμ(z) + Jσ(z)⊤Jσ(z)

Takeaway: uncertainties are important
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σθ(z)

VAEs don’t have good uncertainty 
quantification out-of-the-box

Ideally…
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σ̃θ(z) = { σθ(z) if z is close to the training codes,
a large number otherwise.



How to calibrate the uncertainty?

Overwrite  like thisσθ(z)

σ̃θ(z) = { σθ(z) if z is close to the training codes,
a large number otherwise.

Volume before Volume after

volume(z) = det(J⊤J)

Contrastive 
Divergence 
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Summary of the set-up

We learn latent representations using VAEs, 
and use the decoder to pull back geometry

Uncertainty quantification is important, and 
we currently do it by hand.

The pullback metric is highly dependent on 
the likelihood we choose
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Data: Demonstrations of a robot task

(p, r) ∈ ℝ3 × 𝕊3

Goal: Learn a joint latent space, and 
control through geodesics
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Each point in latent space 
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configuration 



Goal: Learn a joint latent space, and 
control through geodesics

Timestamp: 2:23

https://www.youtube.com/watch?v=wyKVNmDoC2g
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r ∼ vMF(r |μ, κ) ⇒ r ∈ 𝕊3
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Data: Protein sequences (i.e. strings)

Goal: Build meaningful representations



Geodesics follow the evolution of a protein family!*
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They train a VAE as you would for strings…

fθz
So

ftm
ax

probits p

…instead of pulling back the metric, 
they minimize energy of curves.

Energy[c] = ∑
t

∥pt+1 − pt∥2
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Gaussian vMF

Categorical

Bernoulli

Dirichlet

Beta

Gamma

Each choice of likelihood forces us to 
compute new pullback metrics or do hacks.

Many more!

If you can sample from it differentially, 
you can get a latent space geometry!

Each choice of likelihood forces us to 
compute new pullback metrics.



How?

In all these applications, we 
decoded to data space.



How?

In all these applications, we 
decoded to data space.

What if we decode to 
parameter space?



How?

What if we decode to 
parameter space?

Def. Given a distribution , 
we define its statistical manifold

p(x |η)

(ℋ, Iℋ)



How?

What if we decode to 
parameter space?

Def. Given a distribution , 
we define its statistical manifold

p(x |η)

(ℋ, Iℋ)

Set of parameters

Fisher Information Matrix
(i.e. Fisher-Rao metric)



What if we decode to 
parameter space?

Def. Given a distribution , 
we define its statistical manifold

p(x |η)

(ℋ, Iℋ)

Set of parameters

Fisher Information Matrix
(i.e. Fisher-Rao metric)

Iℋ(η) = ∫𝒳
[∇ηlog p(x |η)∇ηlog p(x |η)⊤]p(x |η)dx .



An example

For the univariate Gaussian

ℋ = {(μ, σ) : μ ∈ ℝ, σ ∈ ℝ+}
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Q: How do we pull back the Fisher-Rao metric?

A: 

Computing local KL divergences is enough!

Energy[c] ∝ lim
N→∞

N−1

∑
n=1

KL(p(x |c(tn)), p(x |c(tn+1)))Easily minimized 
using e.g. torch



A toy experiment

fθz ηθ(z)

We pull back the Fisher-Rao for

- Normal


- Bernoulli


- Beta

- Dirichlet


- Exponential



A toy experiment

Beta Bernoulli Dirichlet



Comparing against Latent Space Oddity

Decoding to a Gaussian on MNIST(1)



On human poses

Human poses live on  (product of vMF)𝕋n = 𝕊1 × ⋯ × 𝕊1
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Summary

We consider parameter space 
instead of data space

This allows us to define 
black box latent geometries



Outlook - open problems

Good uncertainty quantification 
is vital for latent geometries



Outlook - open problems

Good uncertainty quantification 
is vital for latent geometries

What does uncertain mean in 
other distributions?



Thanks! Any questions?


