Miguel González-Duque, Geometric DL Reading Group, 2023

Pulling back information geometry

About me

B.Sc. and M.Sc. in Mathematics

Ph.D Fellow at the IT University of Copenhagen

Working on:

Applications of deep generative models to video games

Pulling back information geometry

LATENT SPACE ODDITY: ON THE CURVATURE OF DEEP GENERATIVE MODELS

Georgios Arvanitidis, Lars Kai Hansen, Søren Hauberg Technical University of Denmark, Section for Cognitive Systems {gear,lkai,sohau}@dtu.dk

Learning Riemannian Manifolds for Geodesic Motion Skills

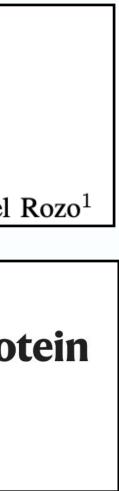
Hadi Beik-Mohammadi^{1,2}, Søren Hauberg³, Georgios Arvanitidis⁴, Gerhard Neumann², and Leonel Rozo¹

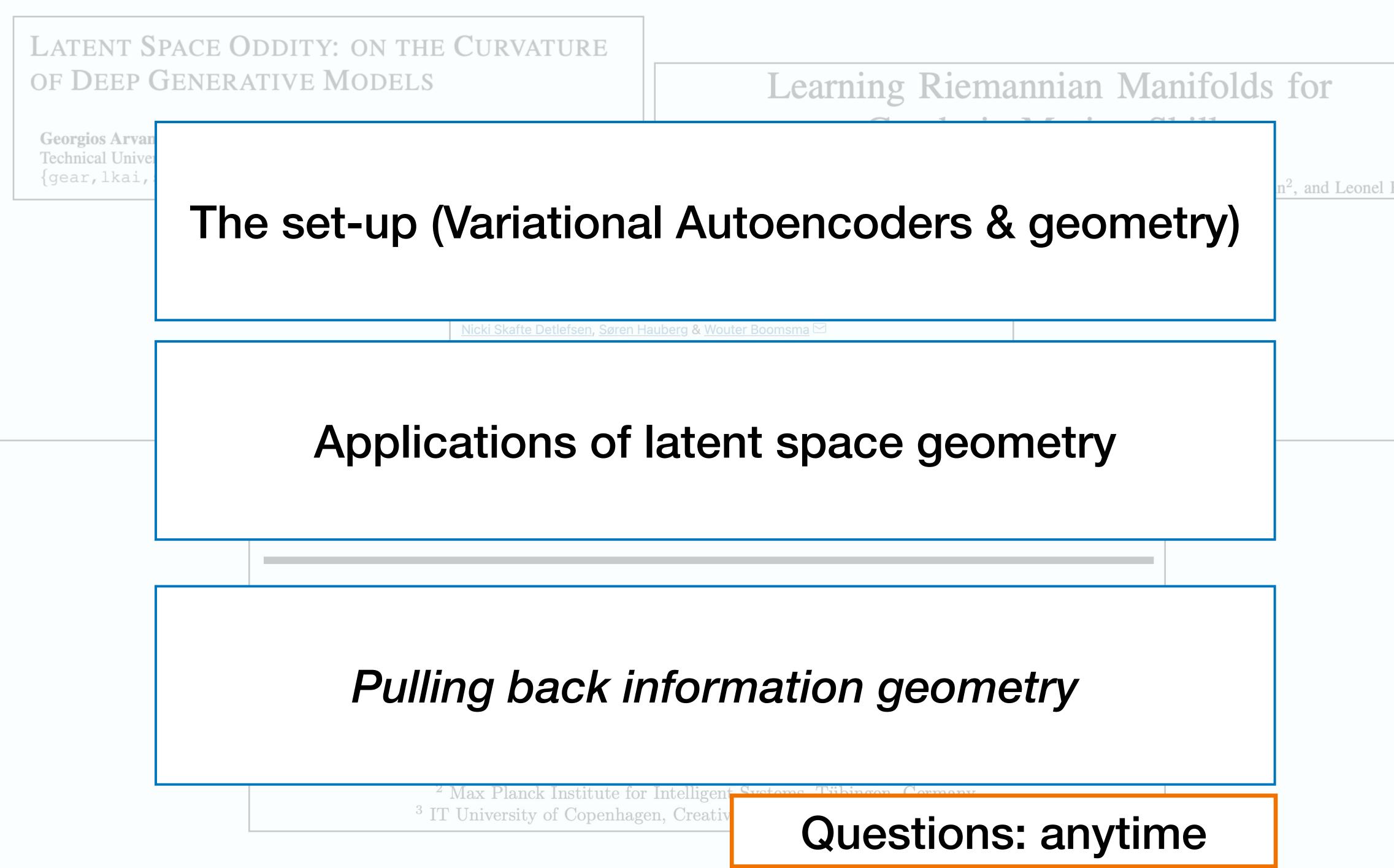
Article Open Access Published: 08 April 2022

Learning meaningful representations of protein sequences

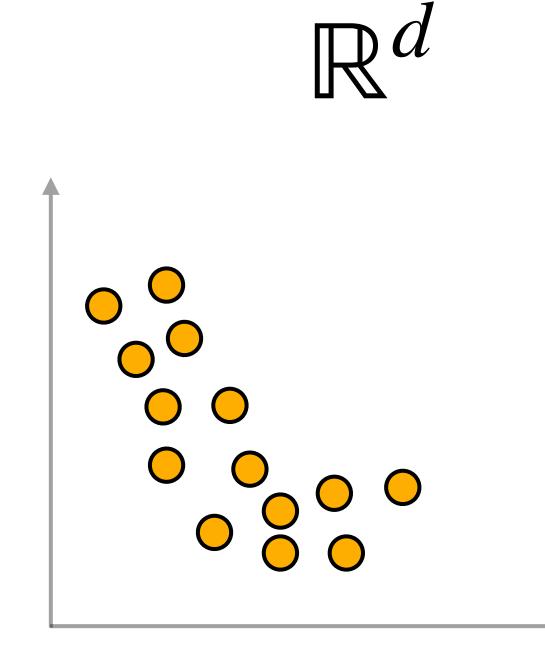
Nicki Skafte Detlefsen, Søren Hauberg & Wouter Boomsma

Pulling back information geometry

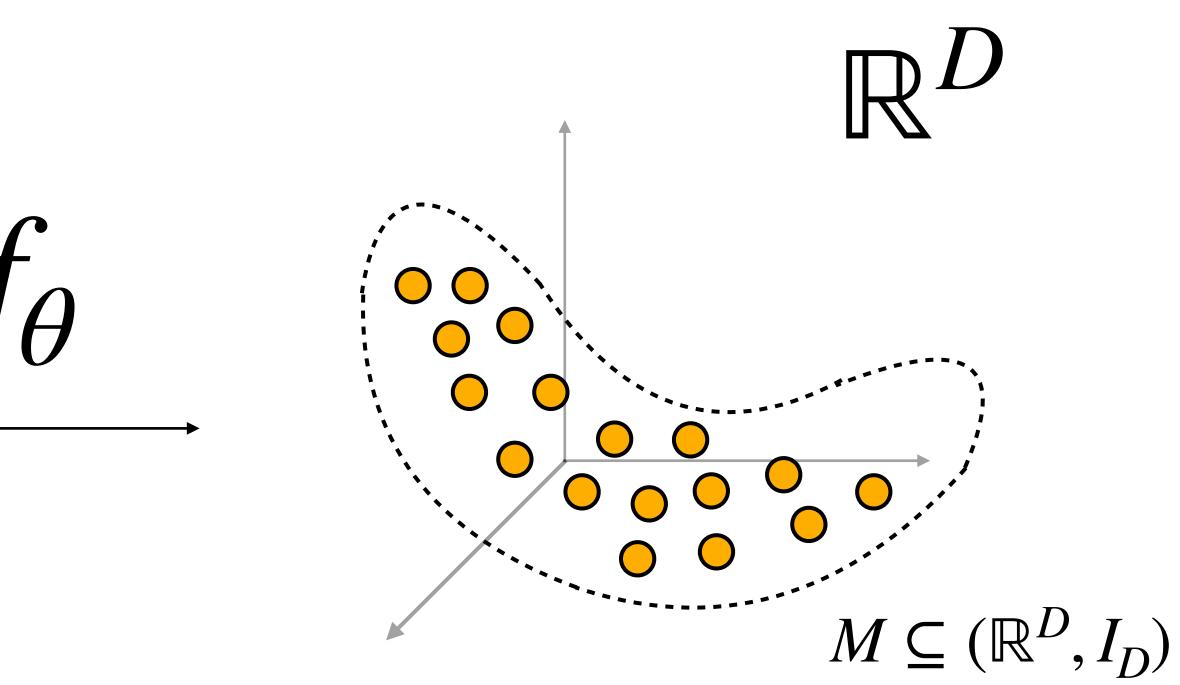




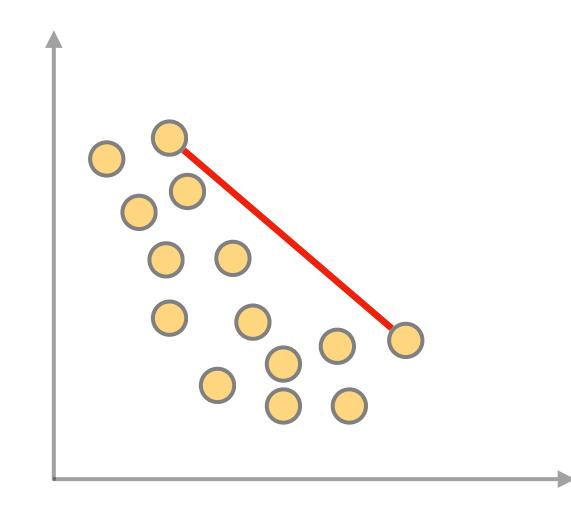
Rozo ¹	



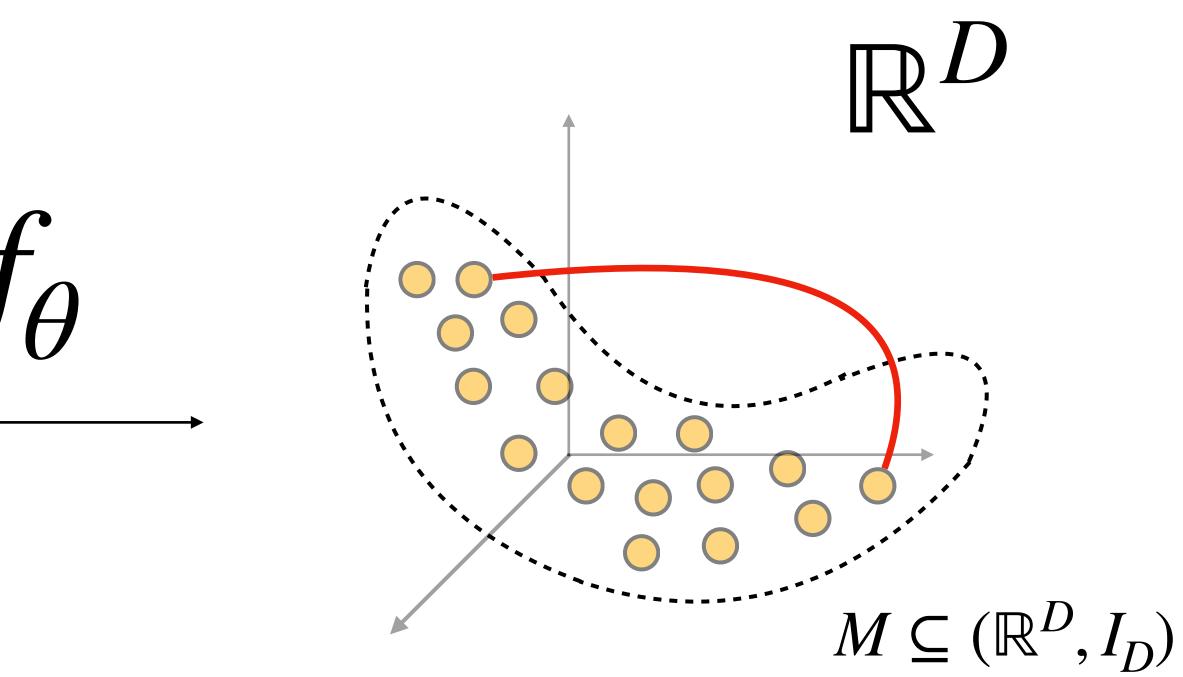
Learning latent representations

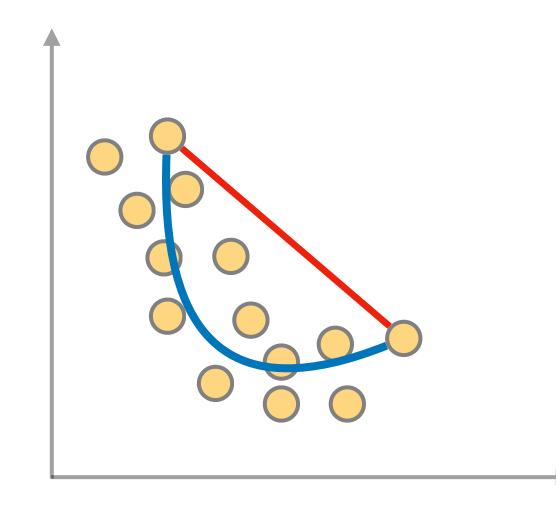


 (\mathbb{R}^d, I_d)



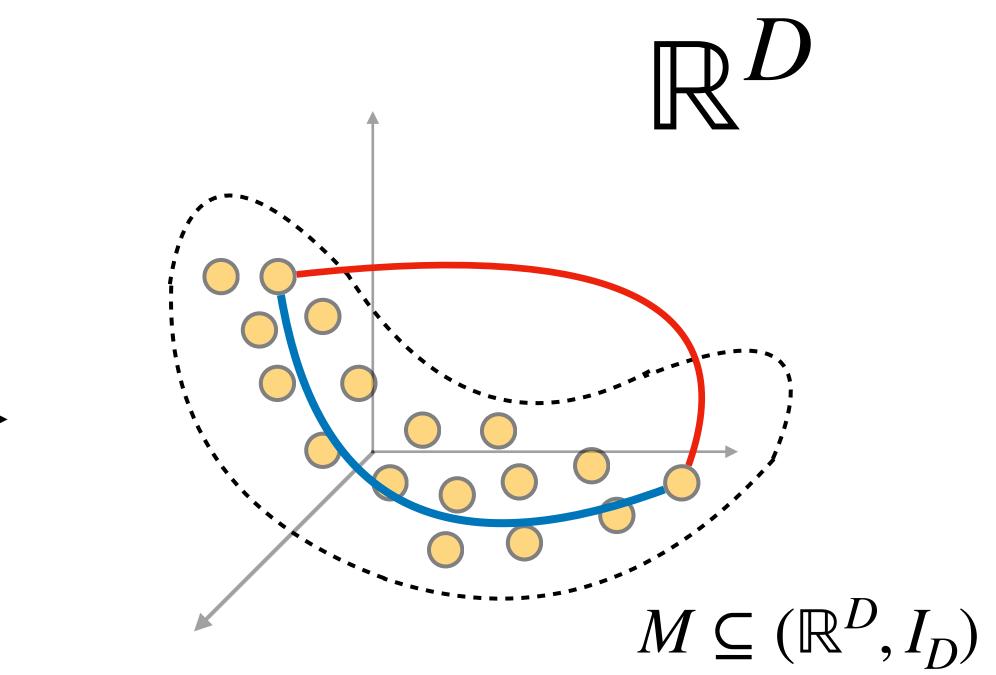
Learning latent representations

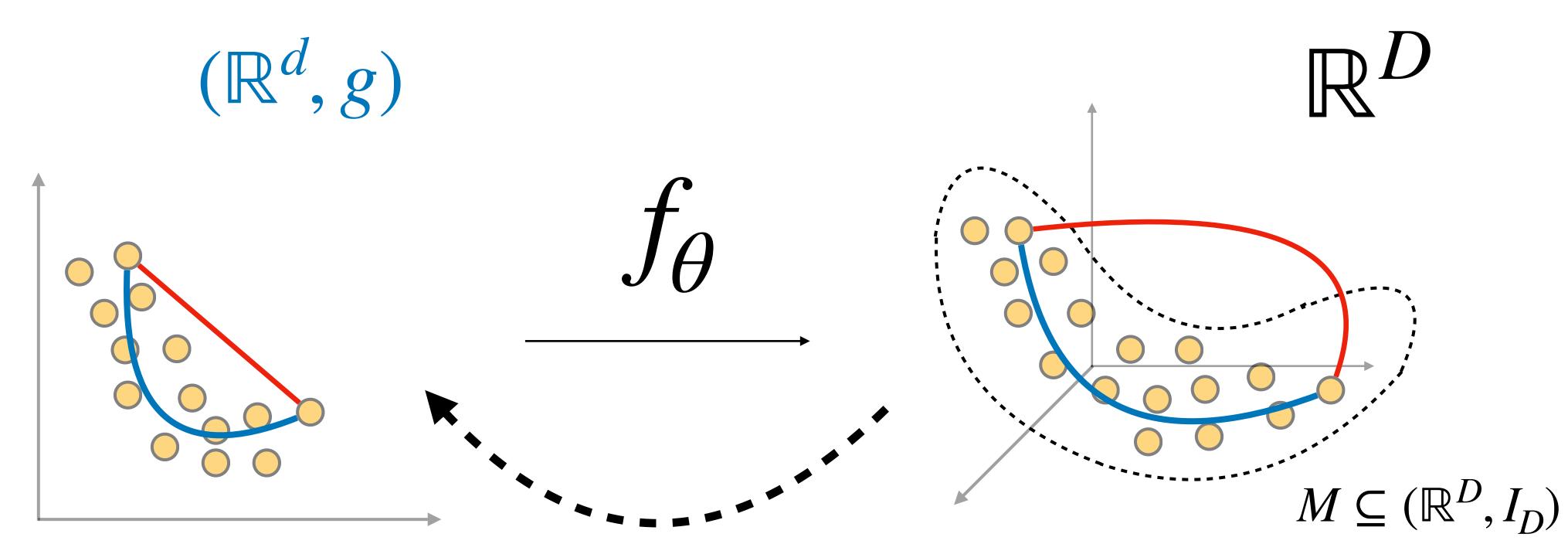




Learning latent representations

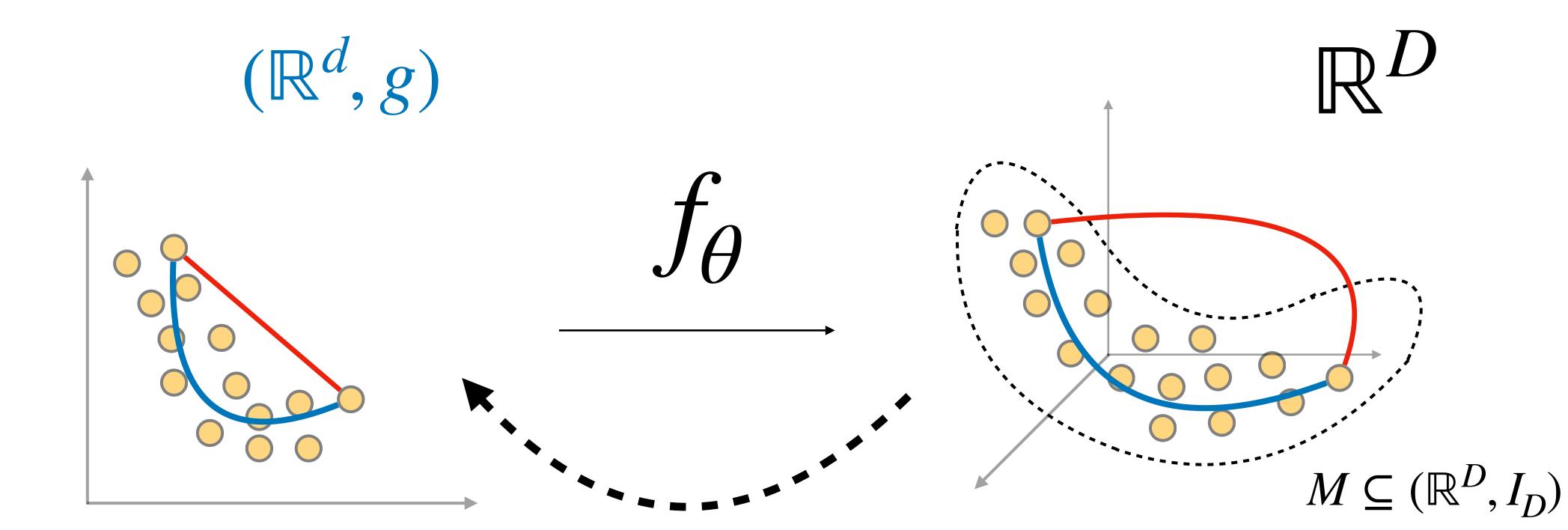
 $J\theta$





 $[g(z)] = J_{f_{\theta}}(z)^{\mathsf{T}} J_{f_{\theta}}(z)$

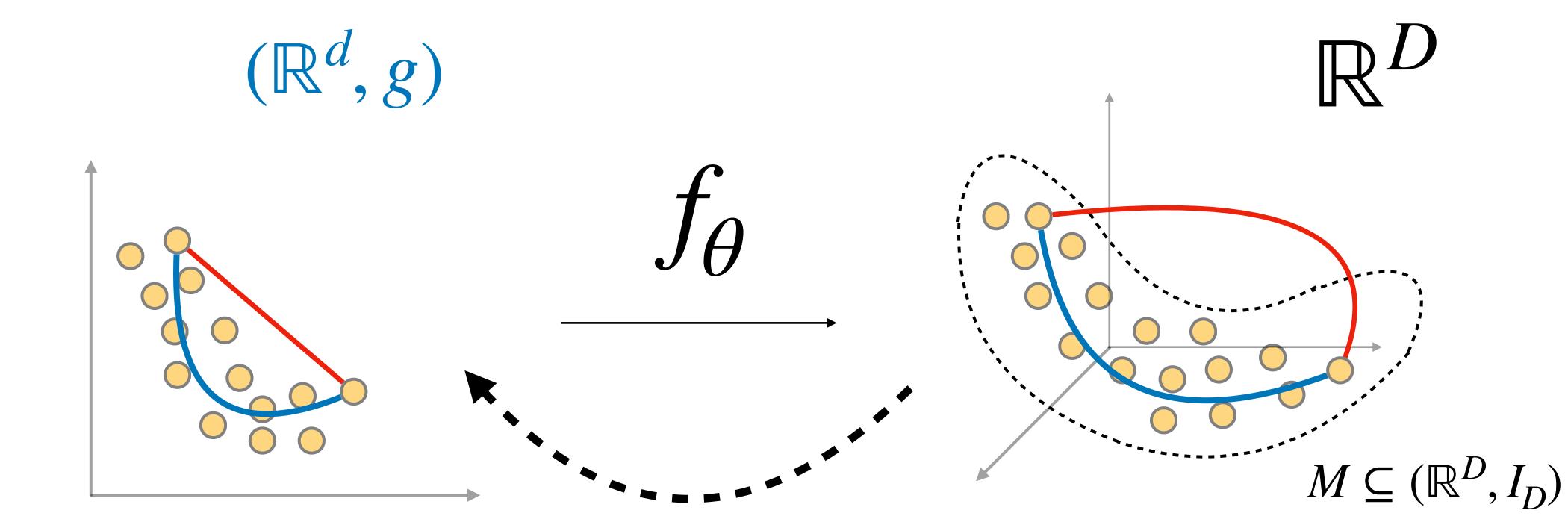
Learning latent representations



 $[g(z)] = J_{f_{\theta}}(z)^{\mathsf{T}} J_{f_{\theta}}(z)$

The pullback metric.

Learning latent representations



 $[g(z)] = J_{f_{\theta}}(z)^{\mathsf{T}} J_{f_{\theta}}(z)$

The pullback metric.

Learning latent representations

The pullback metric.

Informally

Given a curve $c \colon [0,1] \to \mathscr{X}$ and an immersion $f_{\theta} \colon \mathscr{X} \to \mathbb{R}^{D}$...

Length[c] =
$$\int_{0}^{1} \|(f_{\theta} \circ c)'(t)\| dt$$
$$= \dots$$
$$= \int_{0}^{1} \sqrt{c'(t)^{\mathsf{T}} J_{f_{\theta}}(c(t))^{\mathsf{T}} J_{f_{\theta}}(c(t))c'(t)}$$

The pullback metric.

Informally

Given a curve $c \colon [0,1] \to \mathscr{Z}$ and an immersion $f_{\theta} \colon \mathscr{Z} \to \mathbb{R}^{D}$...

Length[c] =
$$\int_{0}^{1} \|(f_{\theta} \circ c)'(t)\| dt$$
$$= \dots$$
$$= \int_{0}^{1} \sqrt{c'(t)^{\mathsf{T}} J_{f_{\theta}}(c(t))^{\mathsf{T}} J_{f_{\theta}}(c(t))c'(t)}$$

Curves that locally minimize length: geodesics.

The pullback metric.

Informally

Given a curve $c \colon [0,1] \to \mathscr{Z}$ and an immersion $f_{\theta} \colon \mathscr{Z} \to \mathbb{R}^D \dots$

Length[c] =
$$\int_{0}^{1} \|(f_{\theta} \circ c)'(t)\| dt$$
$$= \dots$$
$$= \int_{0}^{1} \sqrt{c'(t)^{\mathsf{T}} J_{f_{\theta}}(c(t))^{\mathsf{T}} J_{f_{\theta}}(c(t))c'(t)}$$

Curves that locally minimize length: geodesics.

Formally

Def. A metric g takes two tangent vectors and computes their inner product.

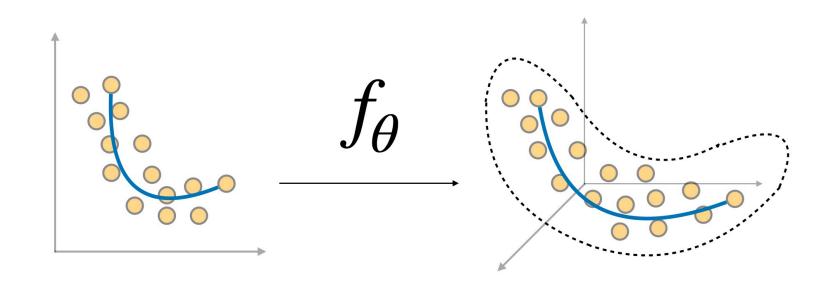
Given an immersion $f_{\theta} \colon \mathscr{X} \to (M, g)$, we define a metric on \mathscr{X} given by

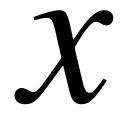
 $g_{f(z)}((df)_{z}(v_{1}), (df)_{z}(v_{2}))$

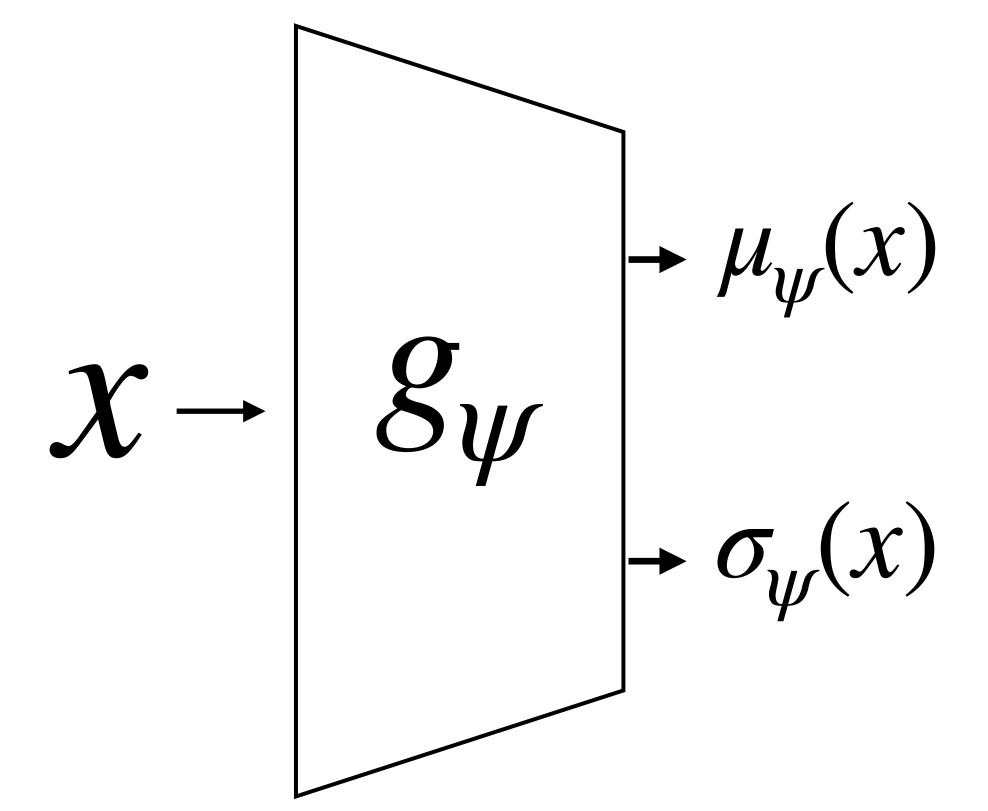
Con:

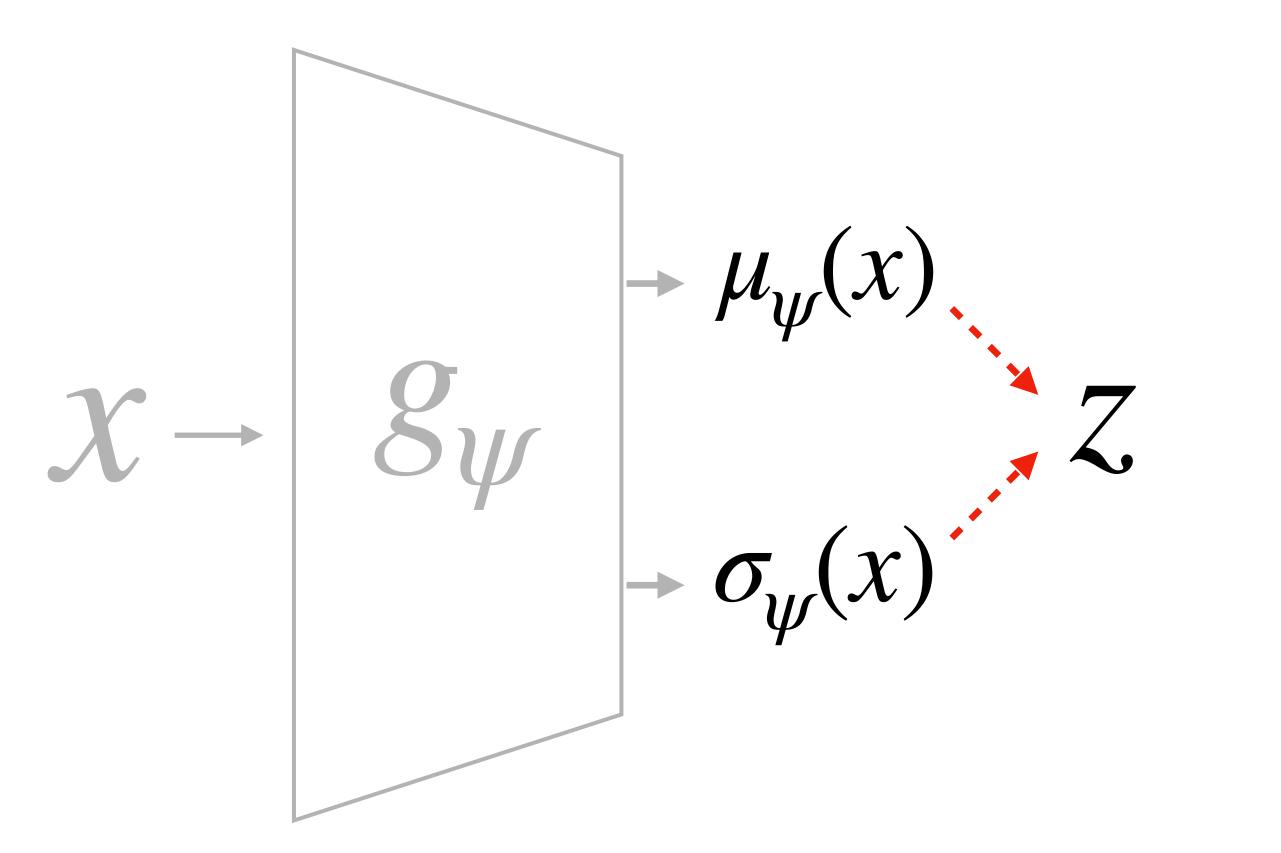
Distances are defined in data space (i.e. invariant to reparametrizations)

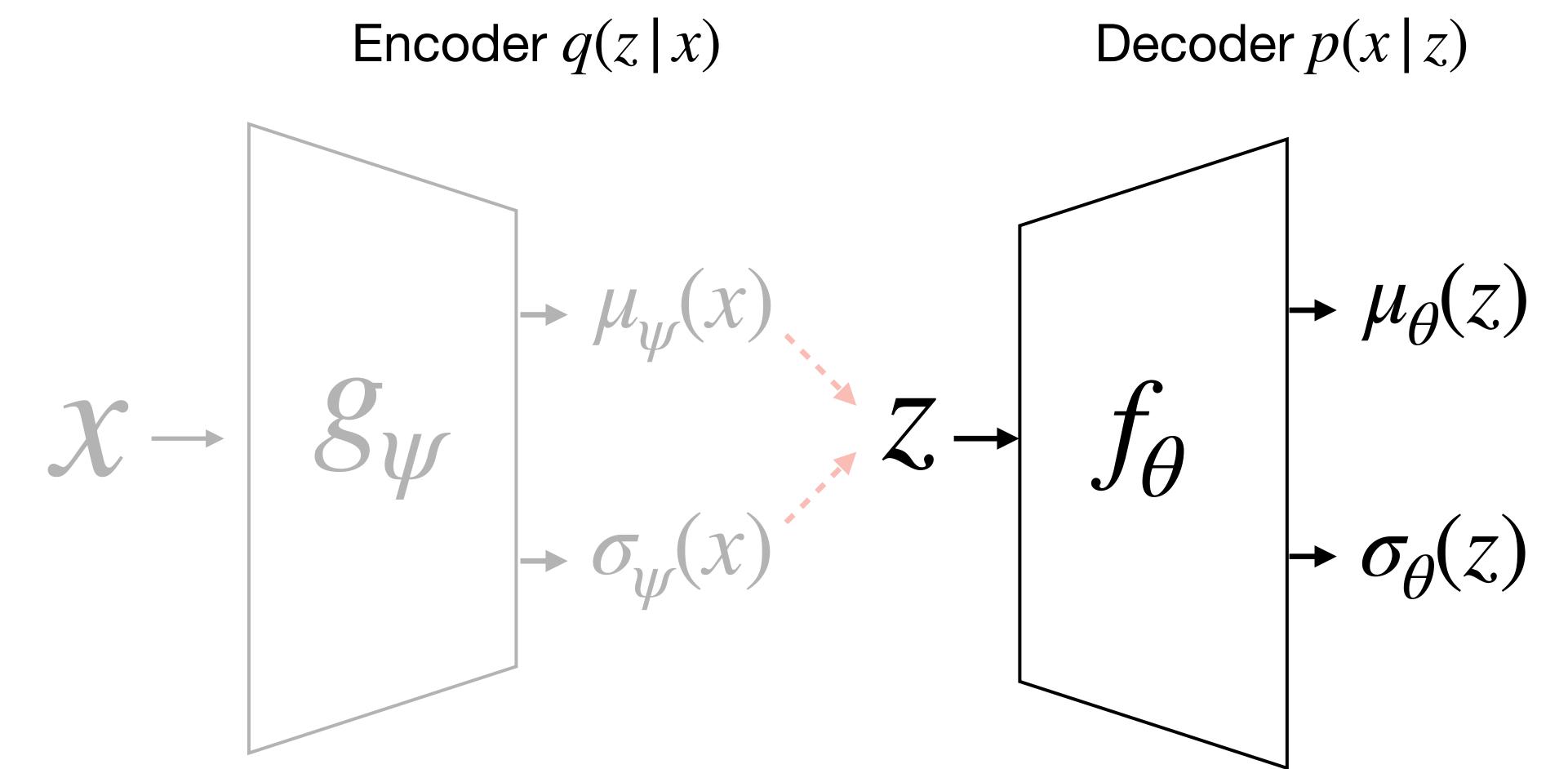
We have to compute $J_{f_{\theta}}(z)^{\top}J_{f_{\theta}}(z)$ for a given likelihood







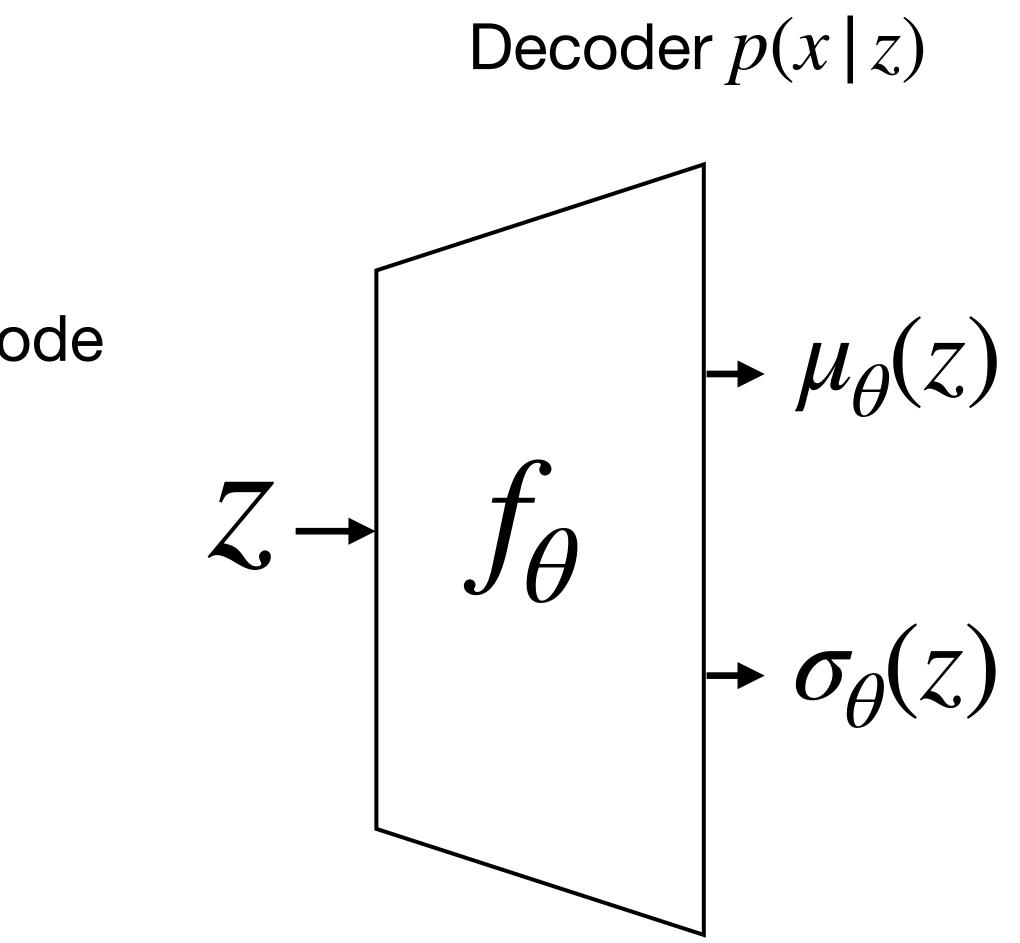




Depending on the data, we can decode to a

- Bernoulli (e.g. MNIST)
- Categorical (e.g. strings)
- Normal

Variational Autoencoders



LATENT SPACE ODDITY: ON THE CURVATURE OF DEEP GENERATIVE MODELS

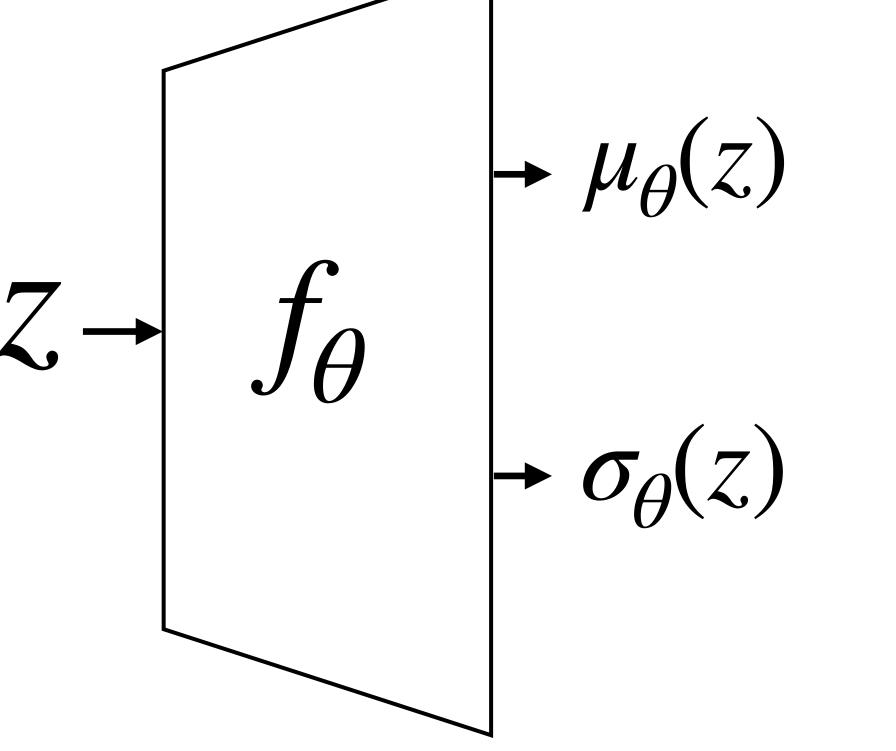
Georgios Arvanitidis, Lars Kai Hansen, Søren Hauberg Technical University of Denmark, Section for Cognitive Systems {gear,lkai,sohau}@dtu.dk

 $\mu_{\theta}(z)$ J d $\sigma_{\theta}(z)$

Likelihood: Gaussian.

 $f_{\theta}(z) = \mu_{\theta}(z) + \epsilon \odot \sigma_{\theta}(z)^2, \ \epsilon \sim N(0, I_D)$

Our generator is stochastic...



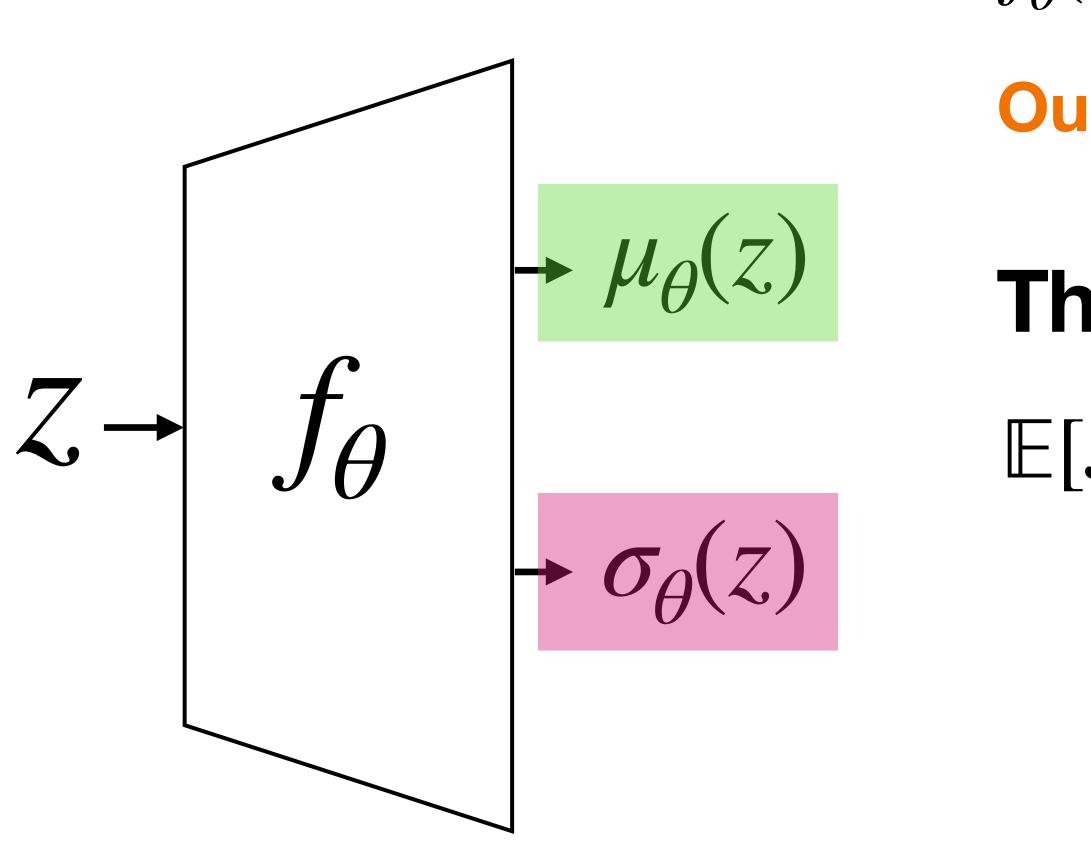
Likelihood: Gaussian.

 $f_{\theta}(z) = \mu_{\theta}(z) + \epsilon \odot \sigma_{\theta}(z)^2, \ \epsilon \sim N(0, I_D)$

Our generator is stochastic...

Theorem 1:

$\mathbb{E}[J_f(z)^{\mathsf{T}}J_f(z)] = J_\mu(z)^{\mathsf{T}}J_\mu(z) + J_\sigma(z)^{\mathsf{T}}J_\sigma(z)$

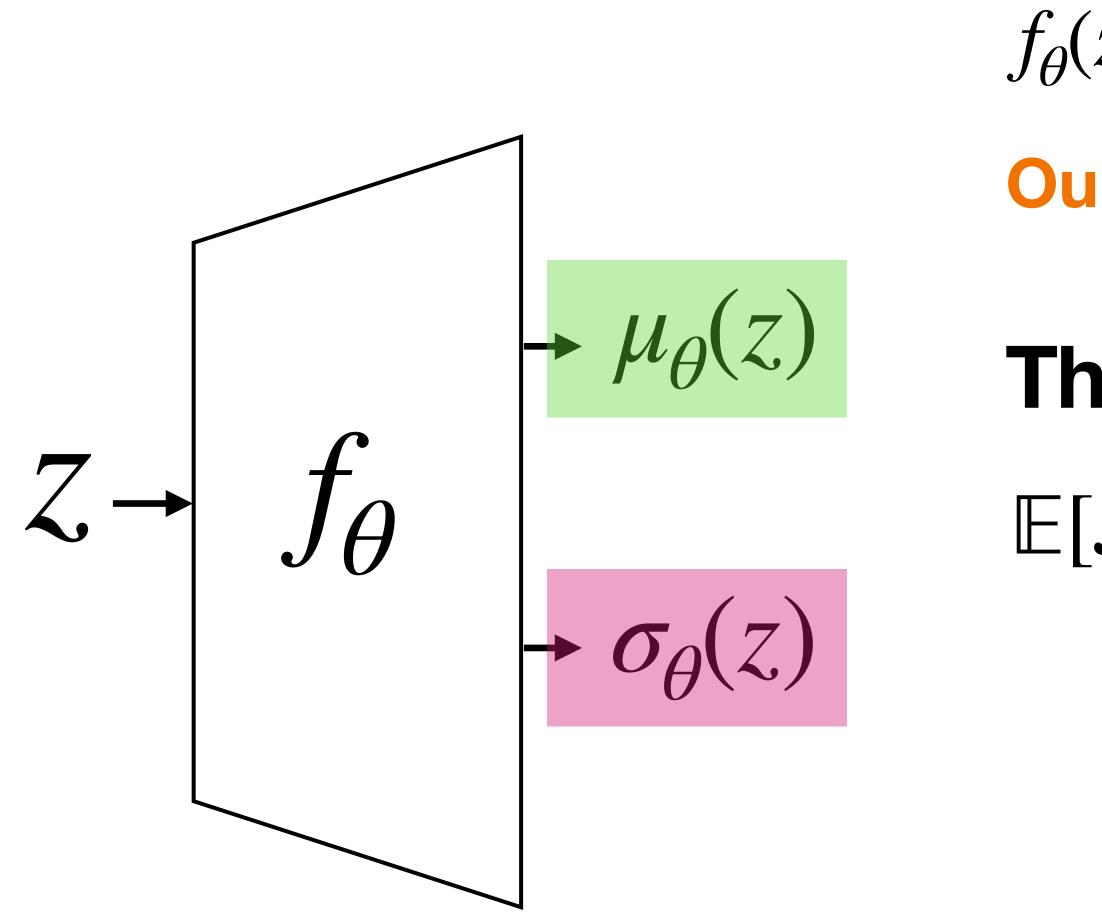


Likelihood: Gaussian.

 $f_{\theta}(z) = \mu_{\theta}(z) + \epsilon \odot \sigma_{\theta}(z)^2, \ \epsilon \sim N(0, I_D)$

Our generator is stochastic...

Theorem 1: $\mathbb{E}[J_f(z)^{\mathsf{T}}J_f(z)] = J_\mu(z)^{\mathsf{T}}J_\mu(z) + J_\sigma(z)^{\mathsf{T}}J_\sigma(z)$

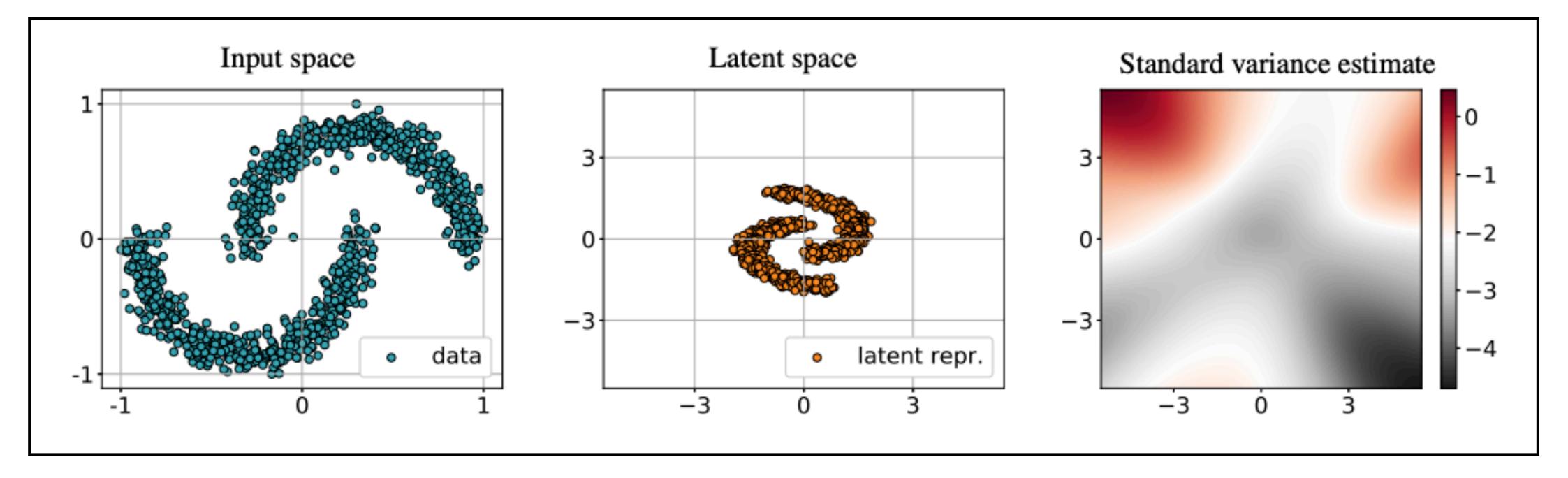


Likelihood: Gaussian.

 $f_{\theta}(z) = \mu_{\theta}(z) + \epsilon \odot \sigma_{\theta}(z)^2, \ \epsilon \sim N(0, I_D)$

Our generator is stochastic...

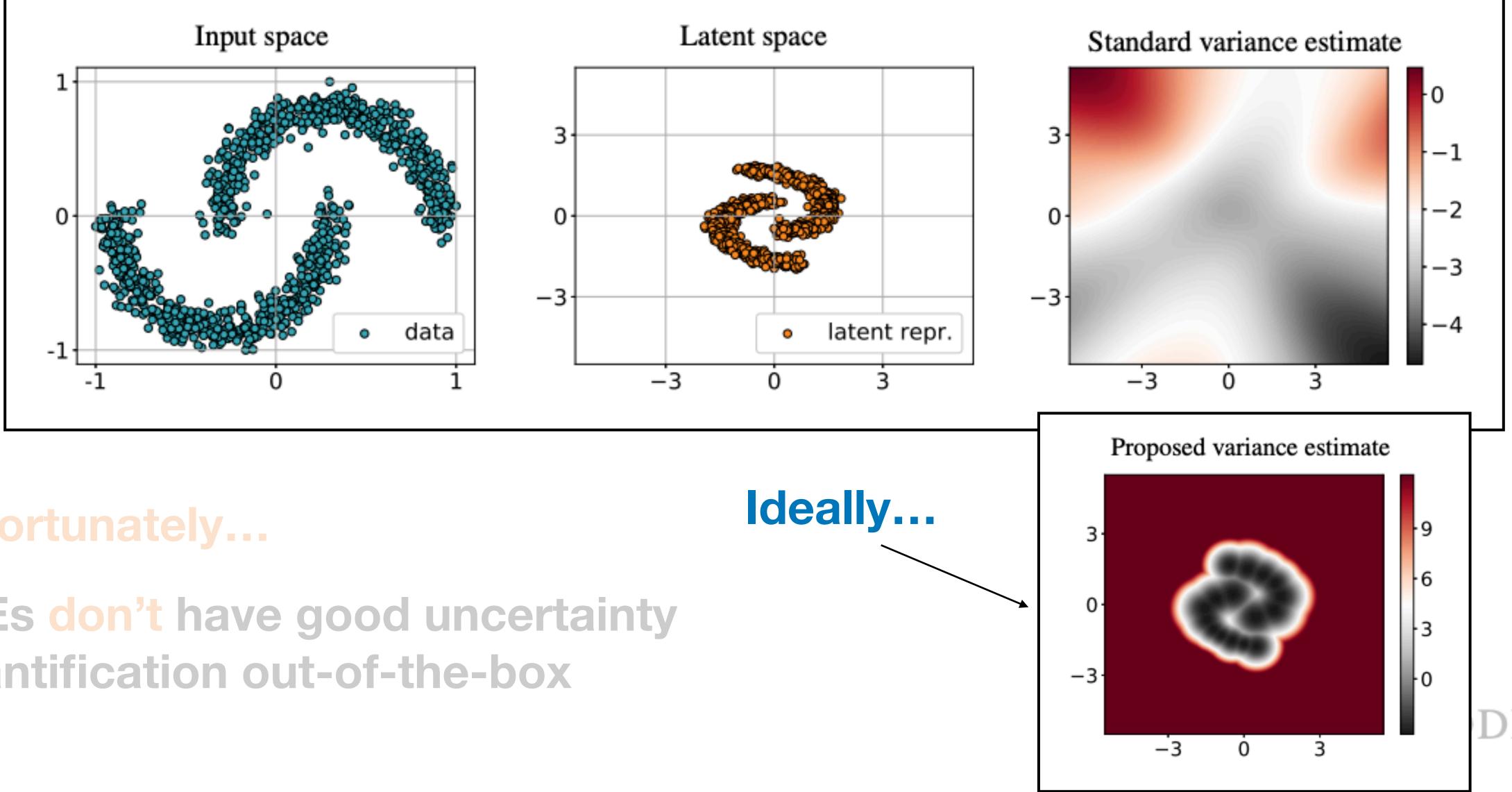
Theorem 1: $\mathbb{E}[J_f(z)^{\mathsf{T}}J_f(z)] = J_{\mu}(z)^{\mathsf{T}}J_{\mu}(z) + J_{\sigma}(z)^{\mathsf{T}}J_{\sigma}(z)$



Unfortunately...

VAEs don't have good uncertainty quantification out-of-the-box

 $\sigma_{\theta}(z)$



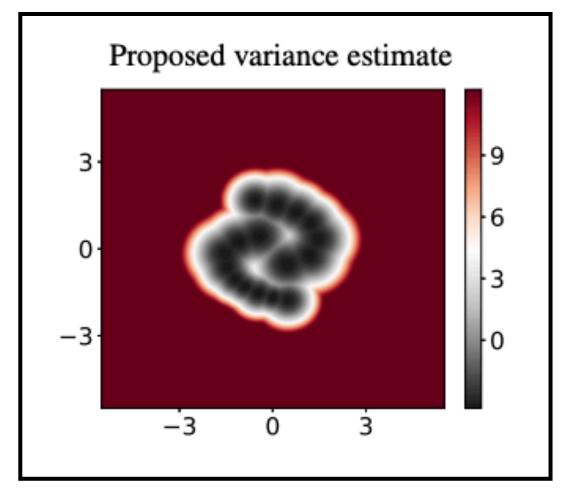
VAEs don't have good uncertainty quantification out-of-the-box

 $\sigma_{\theta}(z)$

How to calibrate the uncertainty?

Overwrite $\sigma_{\theta}(z)$ like this

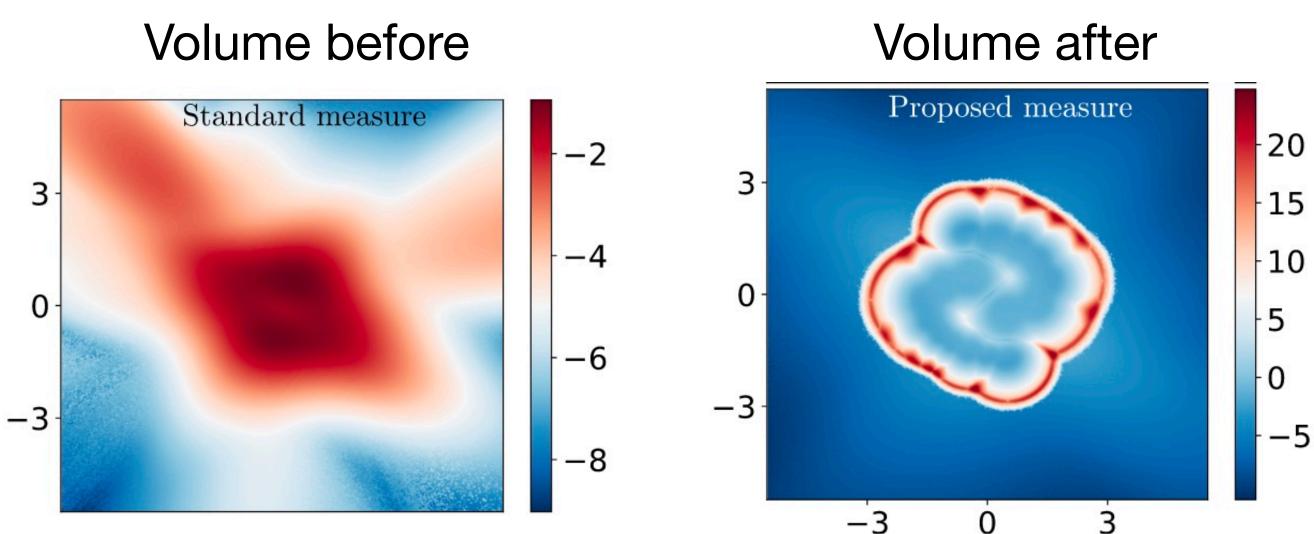
$\widetilde{\sigma}_{\theta}(z) = \begin{cases} \sigma_{\theta}(z) & \text{if } z \text{ is close to the training codes,} \\ \text{a large number otherwise.} \end{cases}$

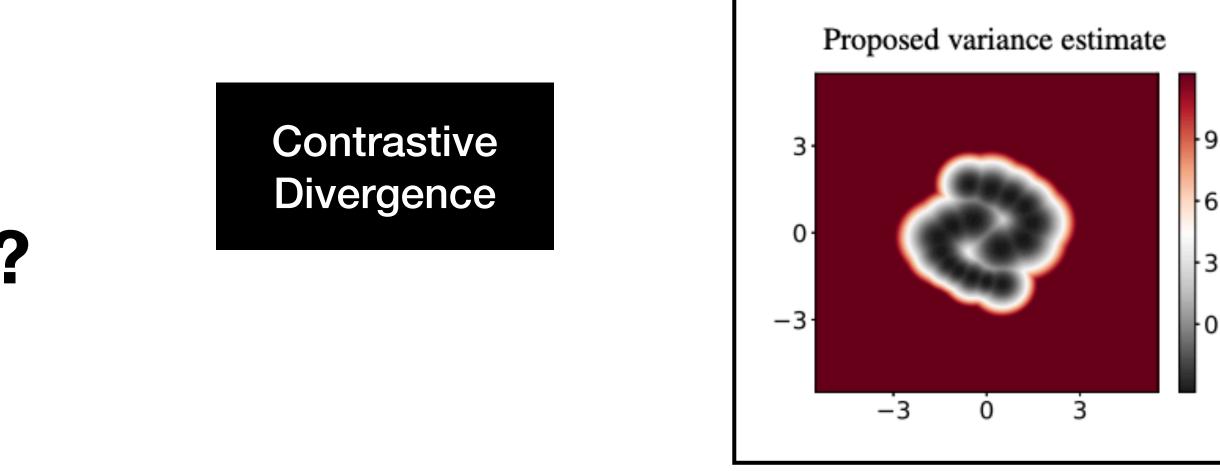


How to calibrate the uncertainty?

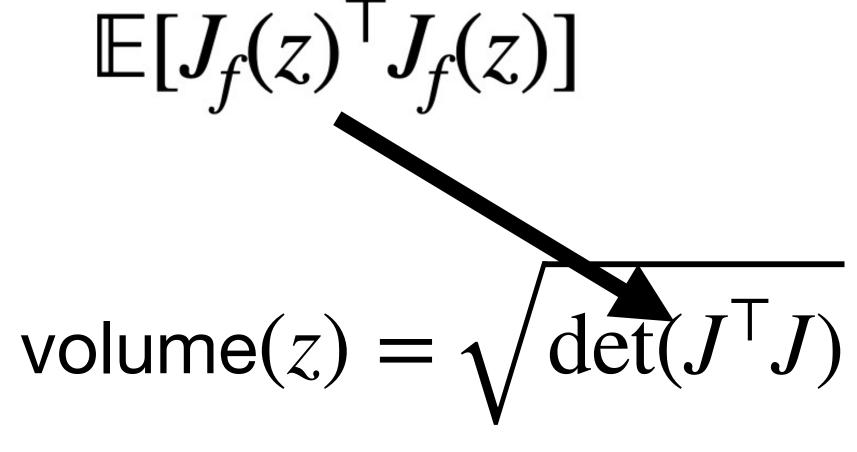
Overwrite $\sigma_{\theta}(z)$ like this

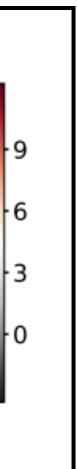
$$\widetilde{\sigma}_{\theta}(z) = \begin{cases} \sigma_{\theta}(z) & \text{i} \\ \text{a large number } \end{cases}$$





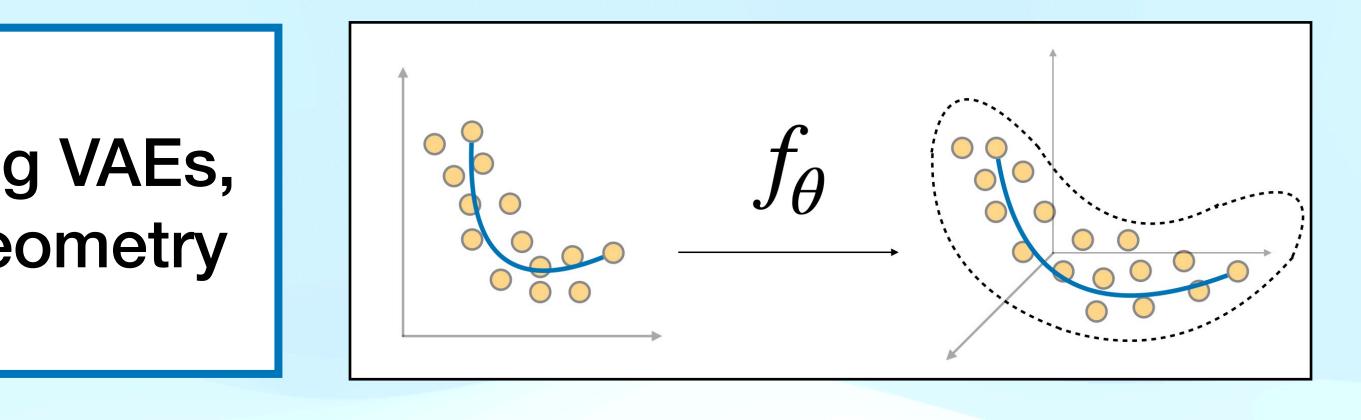
if z is close to the training codes, otherwise.





We learn latent representations using VAEs, and use the decoder to pull back geometry

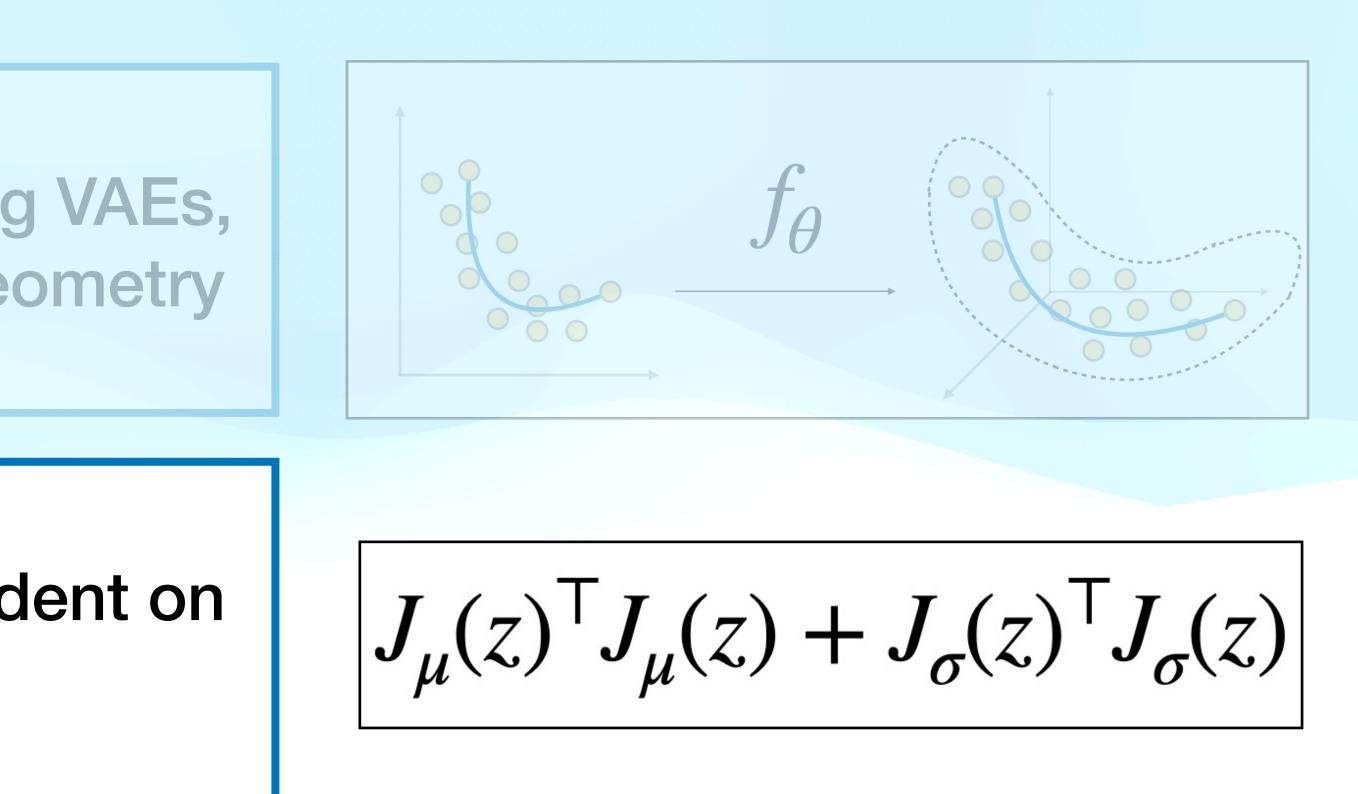
Summary of the set-up



Summary of the set-up

We learn latent representations using VAEs, and use the decoder to pull back geometry

The pullback metric is highly dependent on the likelihood we choose

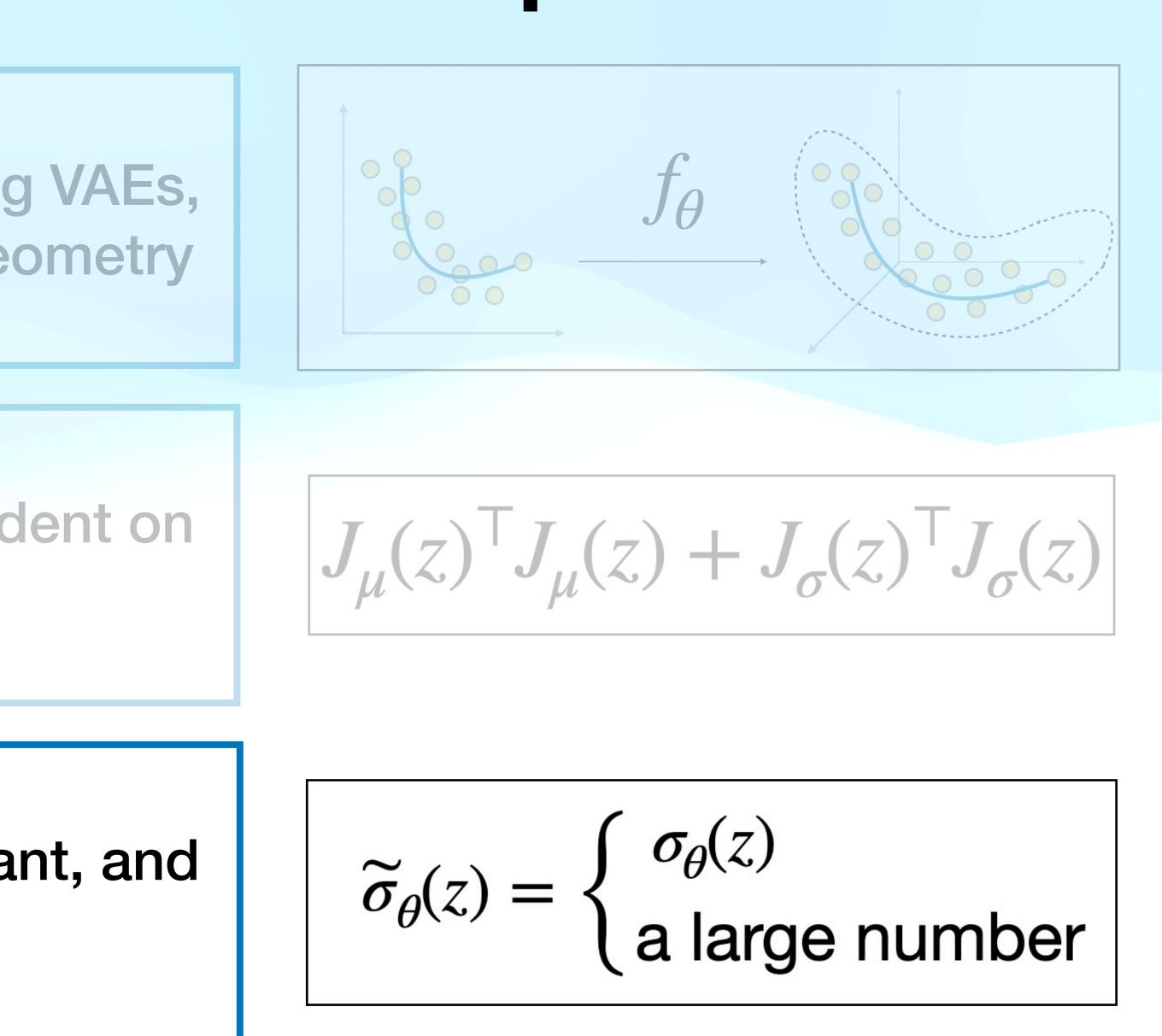


Summary of the set-up

We learn latent representations using VAEs, and use the decoder to pull back geometry

The pullback metric is highly dependent on the likelihood we choose

Uncertainty quantification is important, and we currently do it by hand.



Some applications

Learning Riemannian Manifolds for Geodesic Motion Skills

Hadi Beik-Mohammadi^{1,2}, Søren Hauberg³, Georgios Arvanitidis⁴, Gerhard Neumann², and Leonel Rozo¹

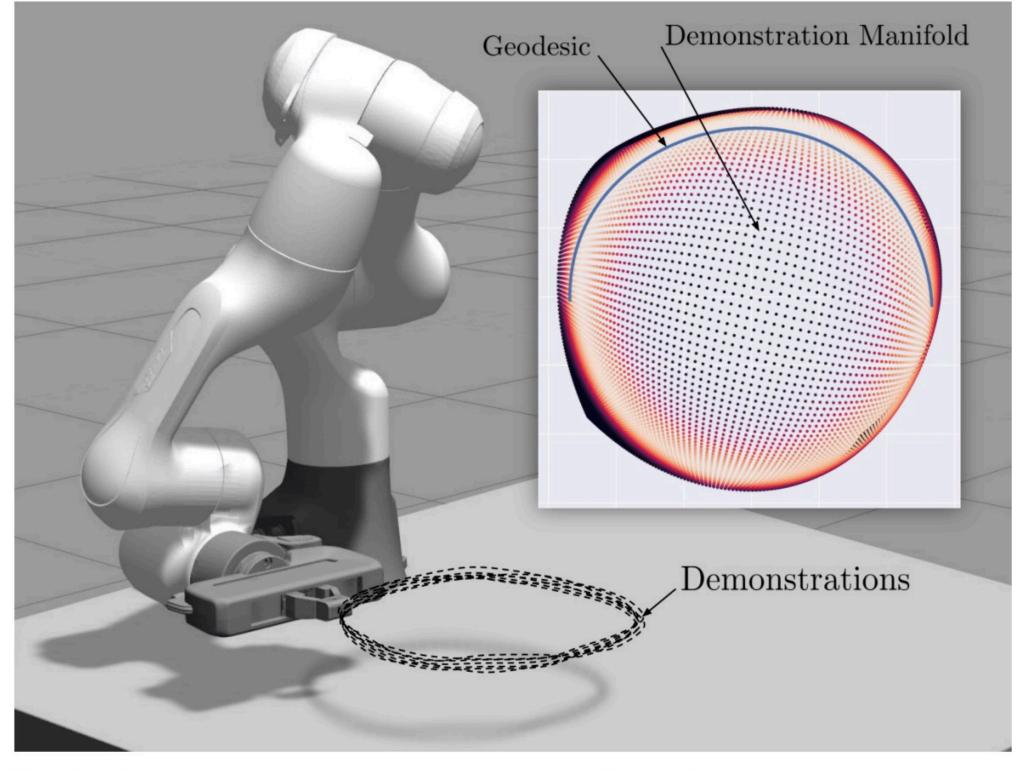
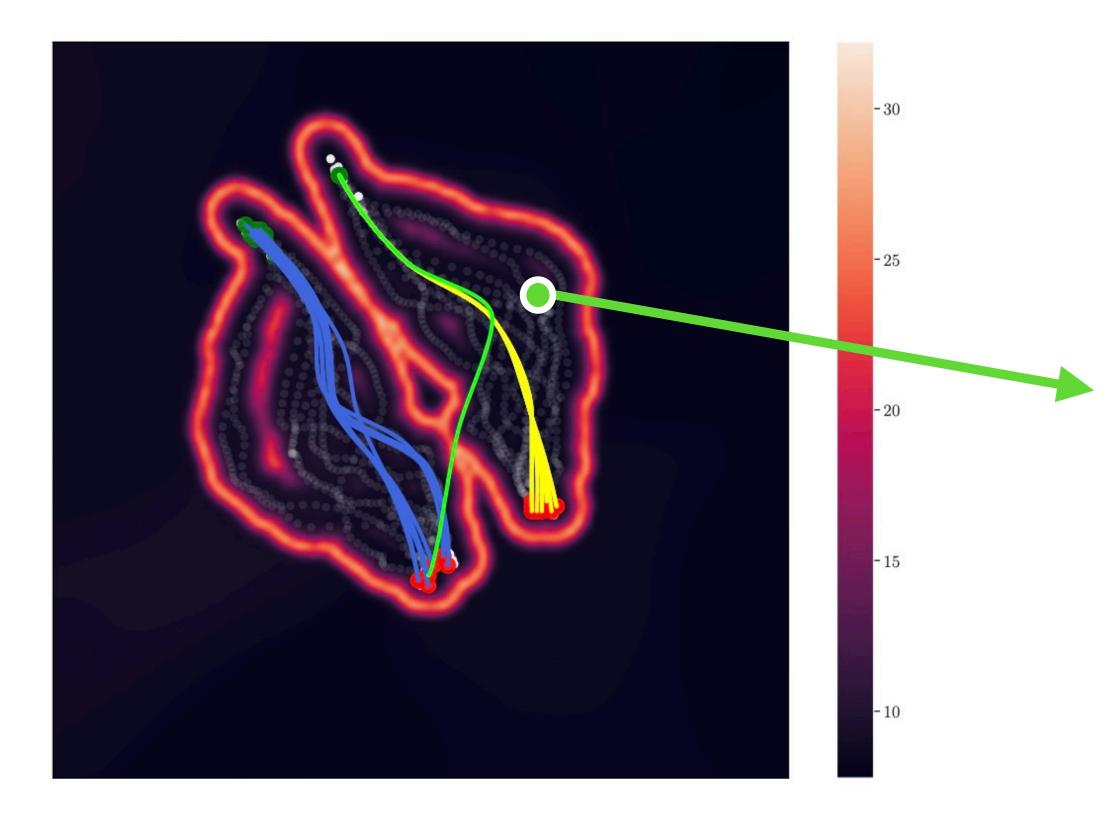


Fig. 1: From demonstrations we learn a variational autoencoder that spans a random Riemannian manifold. Geodesics on this manifold are viewed as motion skills.

Data: Demonstrations of a robot task $(p,r) \in \mathbb{R}^3 \times \mathbb{S}^3$

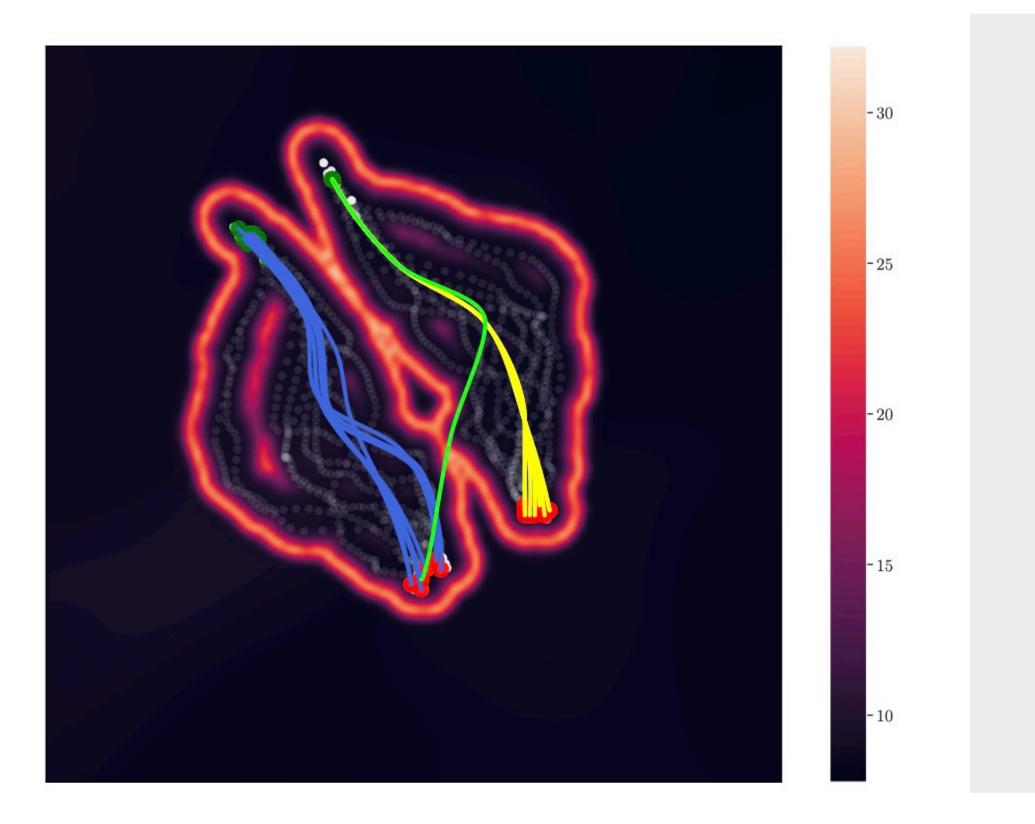
Goal: Learn a joint latent space, and control through geodesics

Learning Riemannian Manifolds for Geodesic Motion Skills



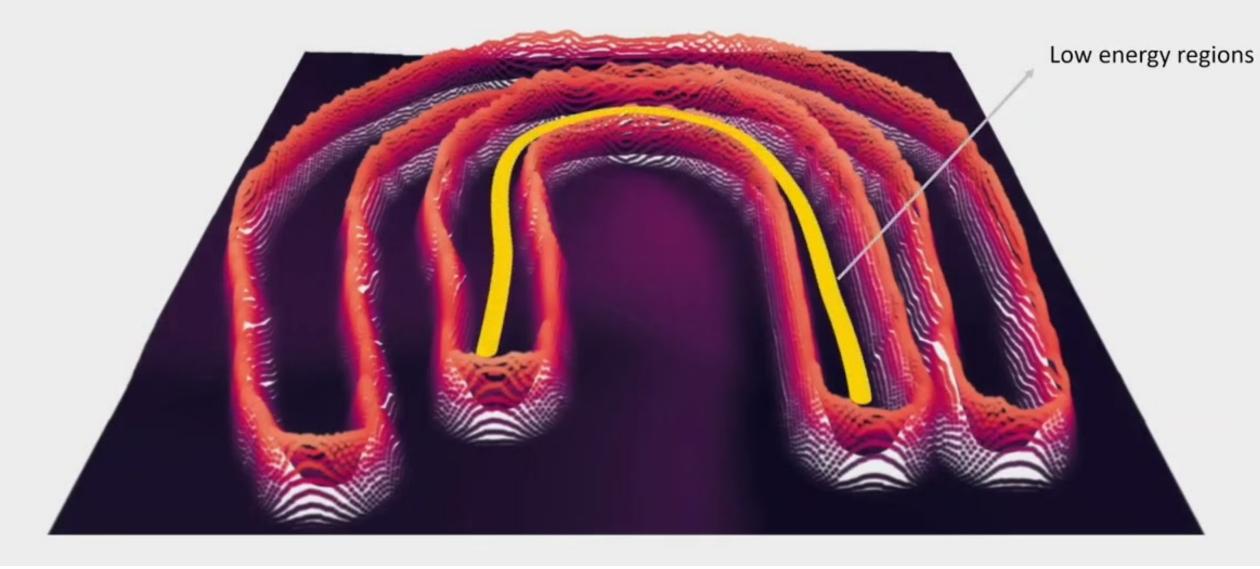
Each point in latent space corresponds to a robot arm configuration

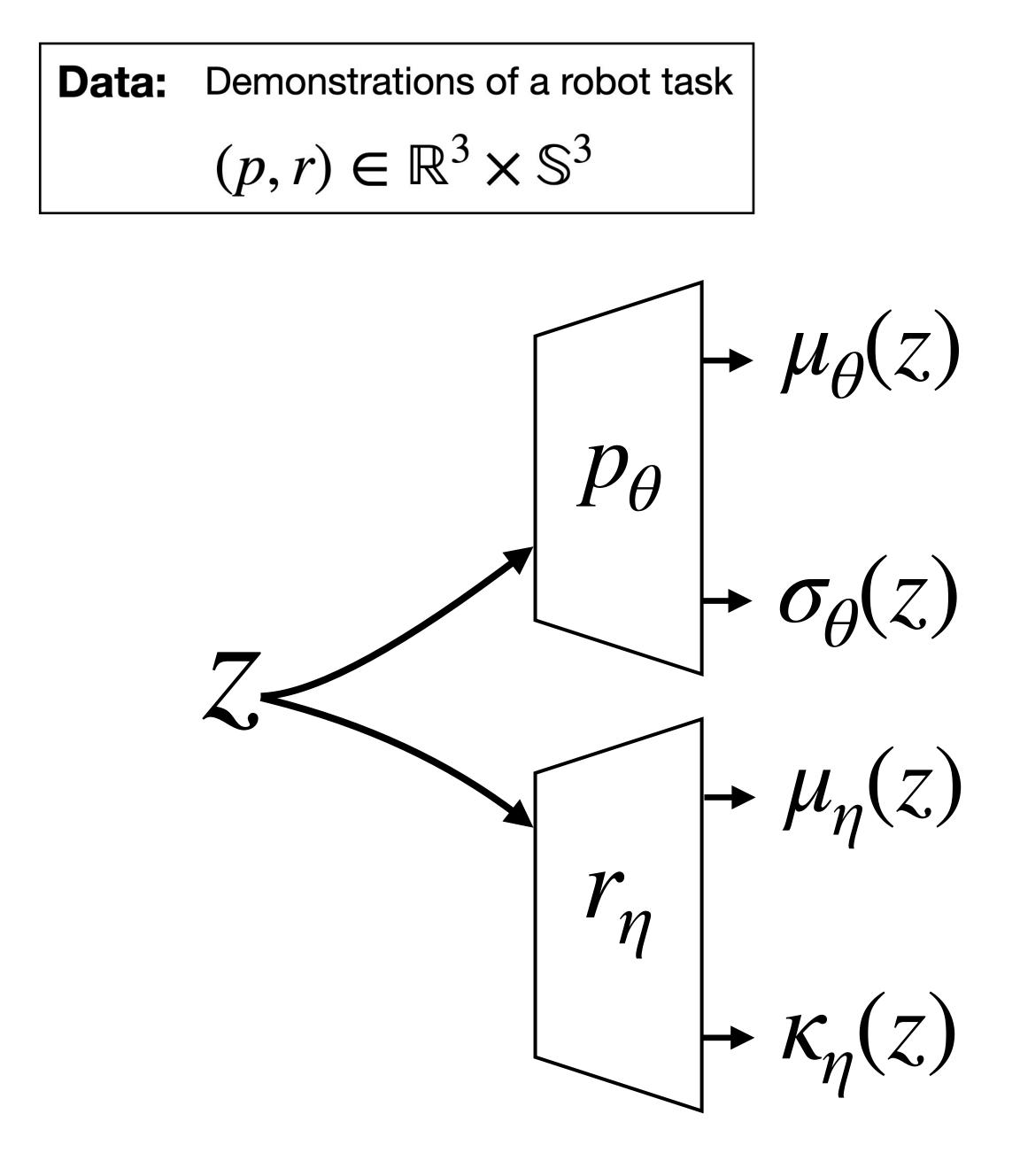
Goal: Learn a joint latent space, and control through geodesics



Goal: Learn a joint latent space, and control through geodesics

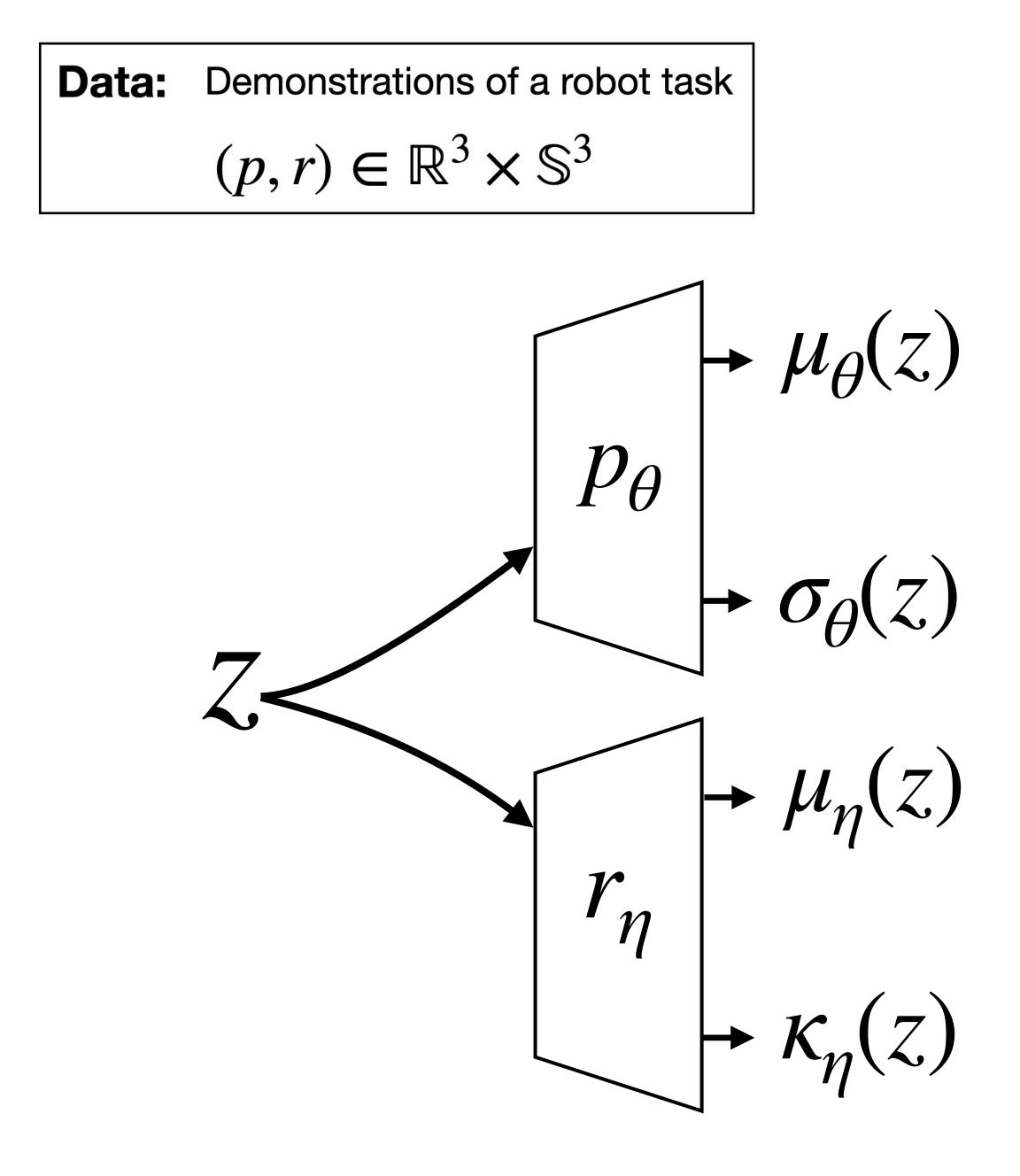
Timestamp: 2:23





They learn a Gaussian for positions, and a von Mises-Fisher for rotations...

$$r \sim \mathsf{vMF}(r \mid \mu, \kappa) \Rightarrow r \in \mathbb{S}^3$$

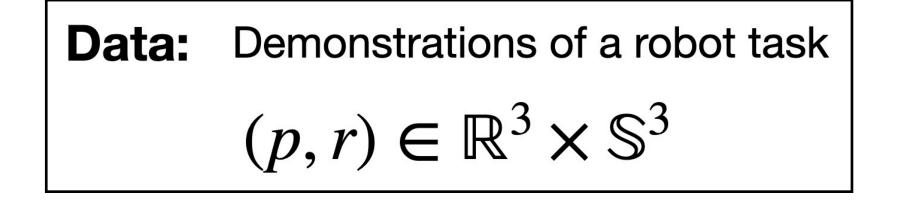


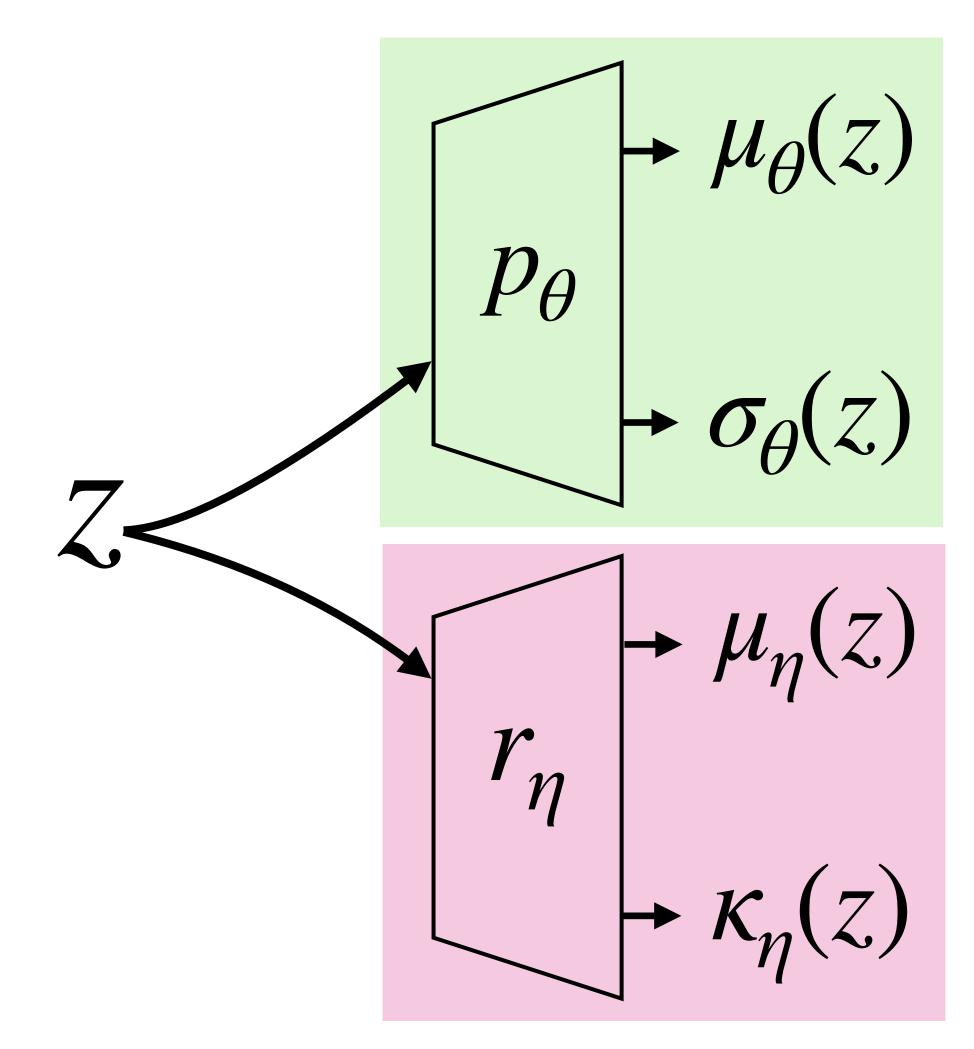
They learn a Gaussian for positions, and a von Mises-Fisher for rotations...

 $r \sim vMF(r \mid \mu, \kappa) \Rightarrow r \in \mathbb{S}^3$

The expected pullback metric also has closed form...

 $J^p_{\mu}(z)^{\mathsf{T}} J^p_{\mu}(z) + J^p_{\sigma}(z)^{\mathsf{T}} J^p_{\sigma}(z)$ $+J_{\mu}^{r}(z)^{\mathsf{T}}J_{\mu}^{r}(z)+J_{\kappa}^{r}(z)^{\mathsf{T}}J_{\kappa}^{r}(z)$





They learn a Gaussian for positions, and a von Mises-Fisher for rotations...

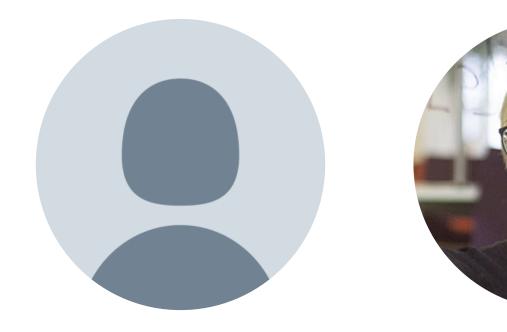
$$r \sim v\mathsf{MF}(r \mid \mu, \kappa) \Rightarrow r \in \mathbb{S}^3$$

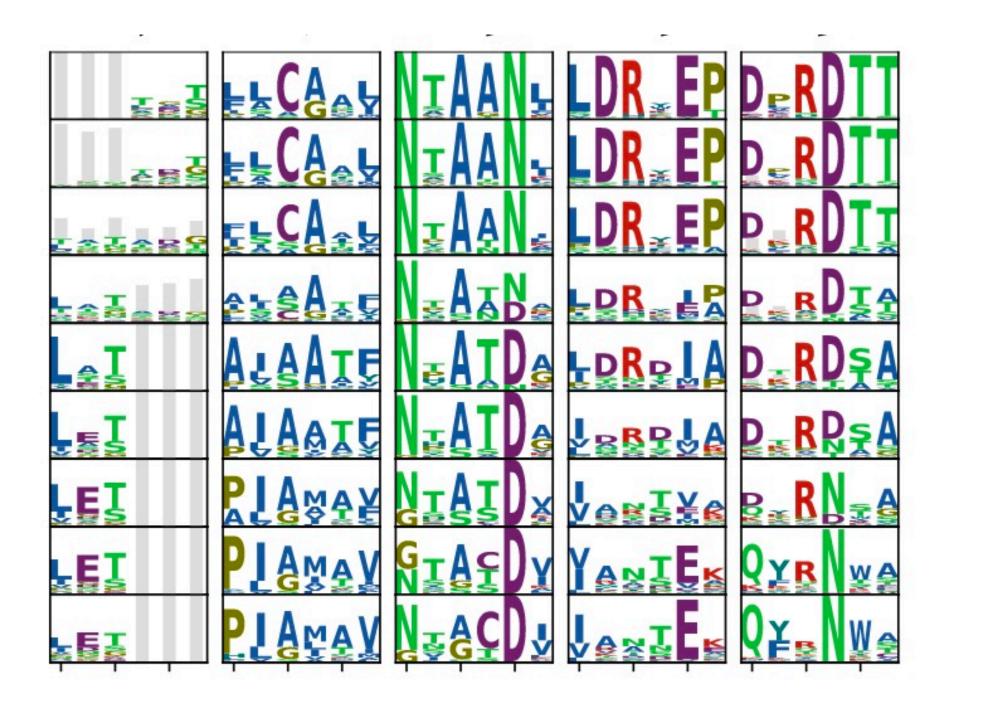
The expected pullback metric also has closed form...

$$J^{p}_{\mu}(z)^{\mathsf{T}}J^{p}_{\mu}(z) + J^{p}_{\sigma}(z)^{\mathsf{T}}J^{p}_{\sigma}(z) + J^{r}_{\mu}(z)^{\mathsf{T}}J^{p}_{\mu}(z) + J^{r}_{\kappa}(z)^{\mathsf{T}}J^{r}_{\kappa}(z)$$

Article Open Access Published: 08 April 2022 Learning meaningful representations of protein sequences

Nicki Skafte Detlefsen, Søren Hauberg & Wouter Boomsma



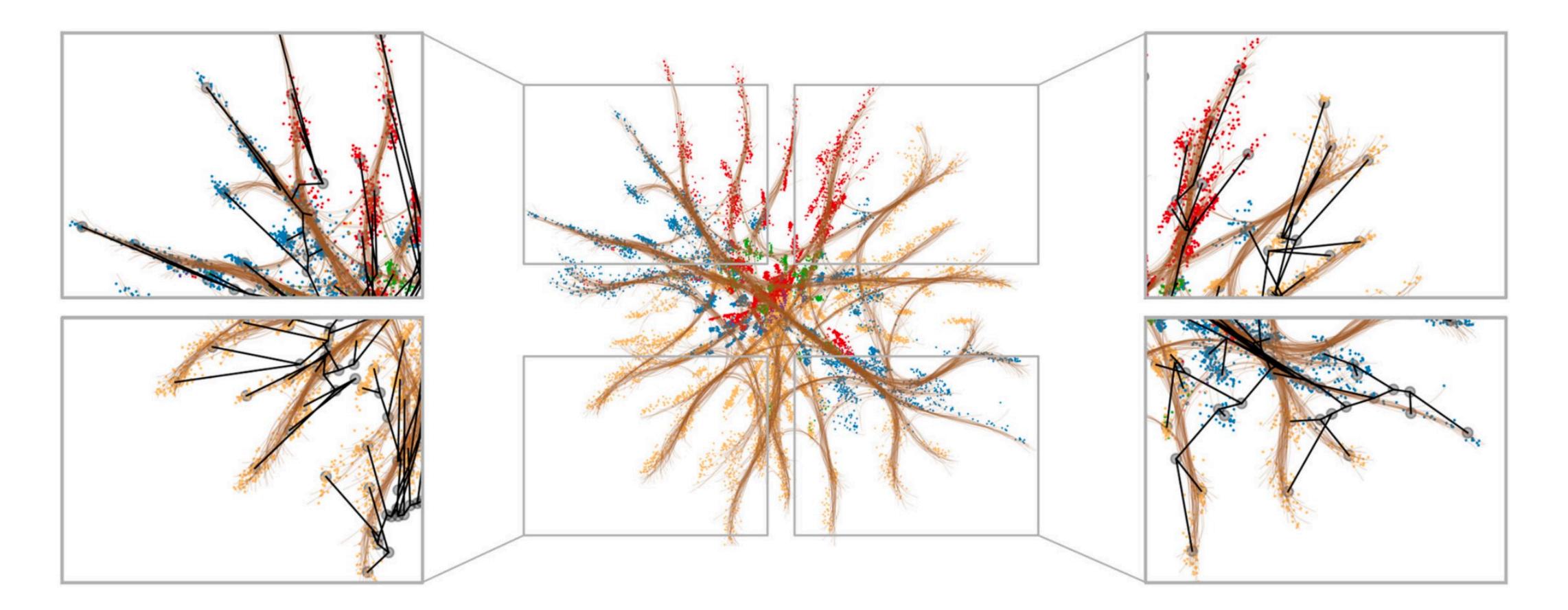


Data: Protein sequences (i.e. strings)

Build meaningful representations Goal:

Learning meaningful representations of protein sequences

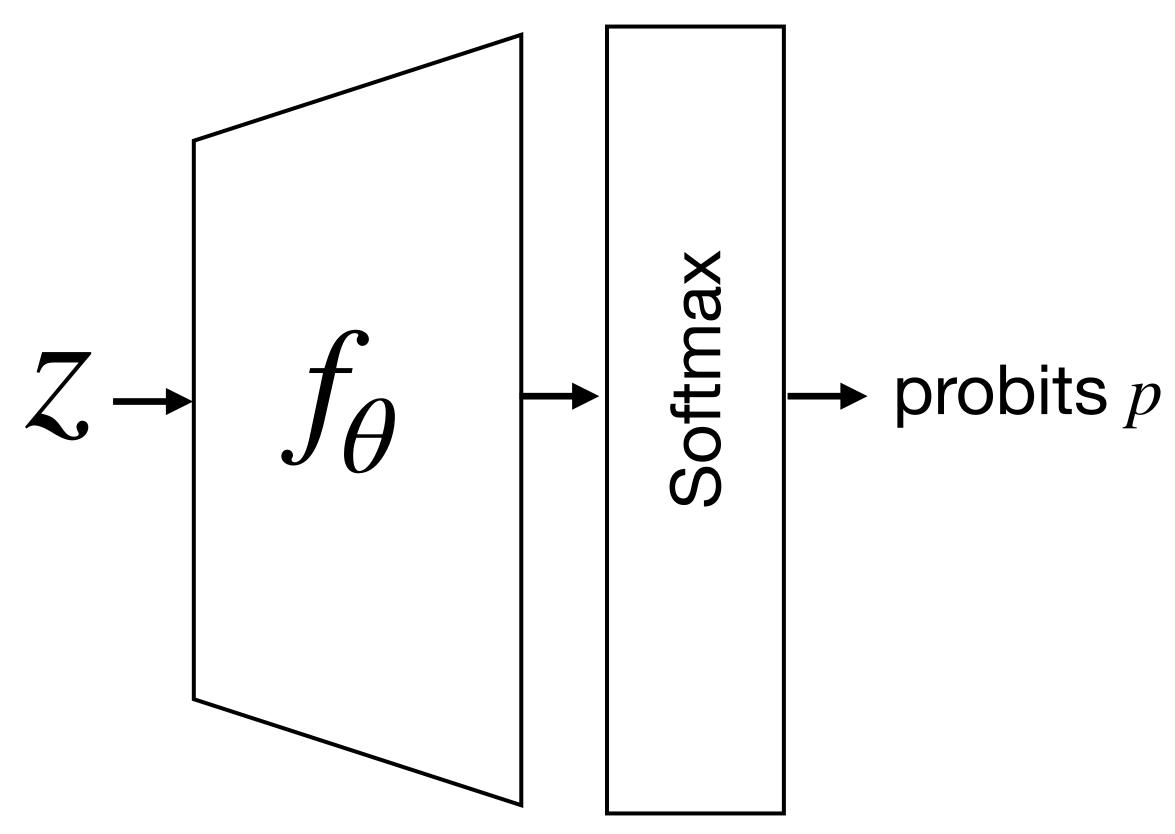
Goal: Build meaningful representations



Geodesics follow the evolution of a protein family!*

Learning meaningful representations of protein sequences

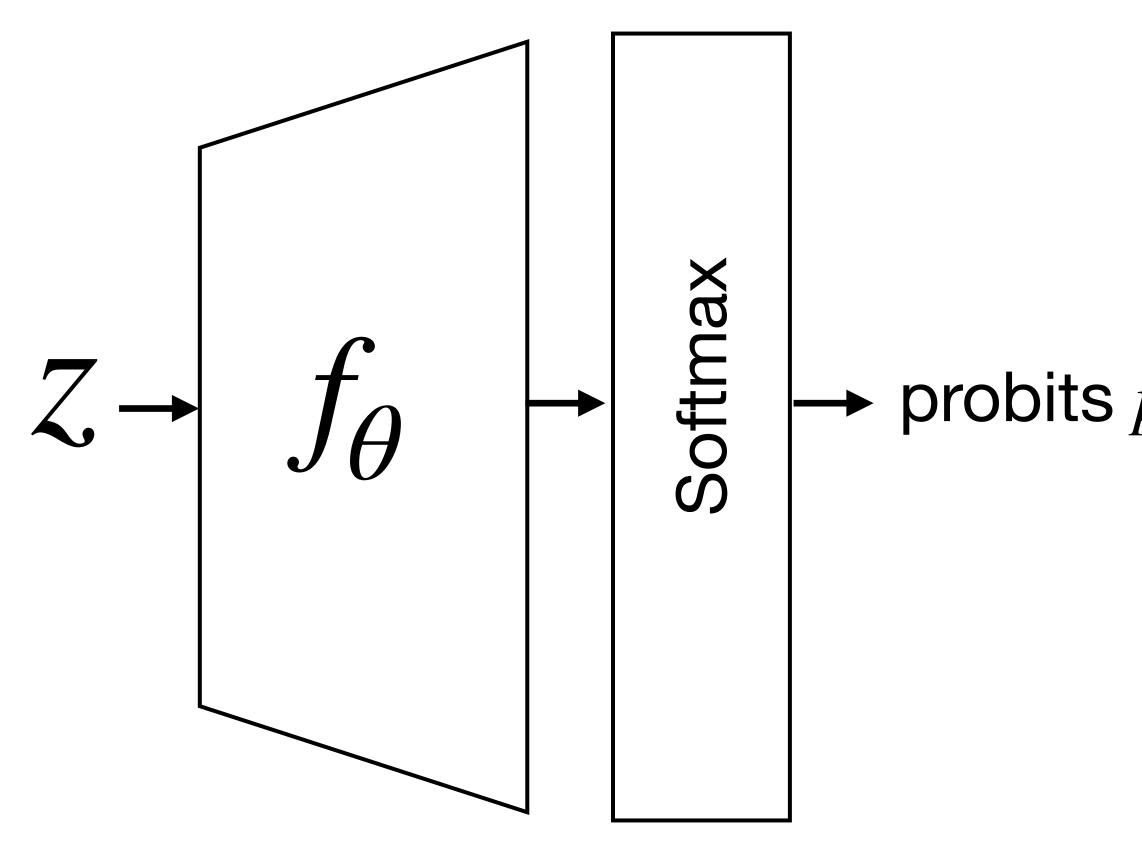
Protein sequences (i.e. strings) Data:



They train a VAE as you would for strings...

Learning meaningful representations of protein sequences

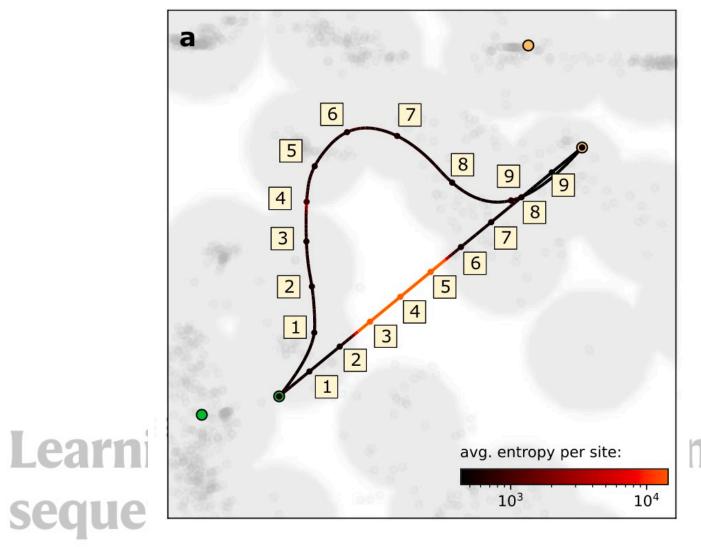
Protein sequences (i.e. strings) Data:



They train a VAE as you would for strings...

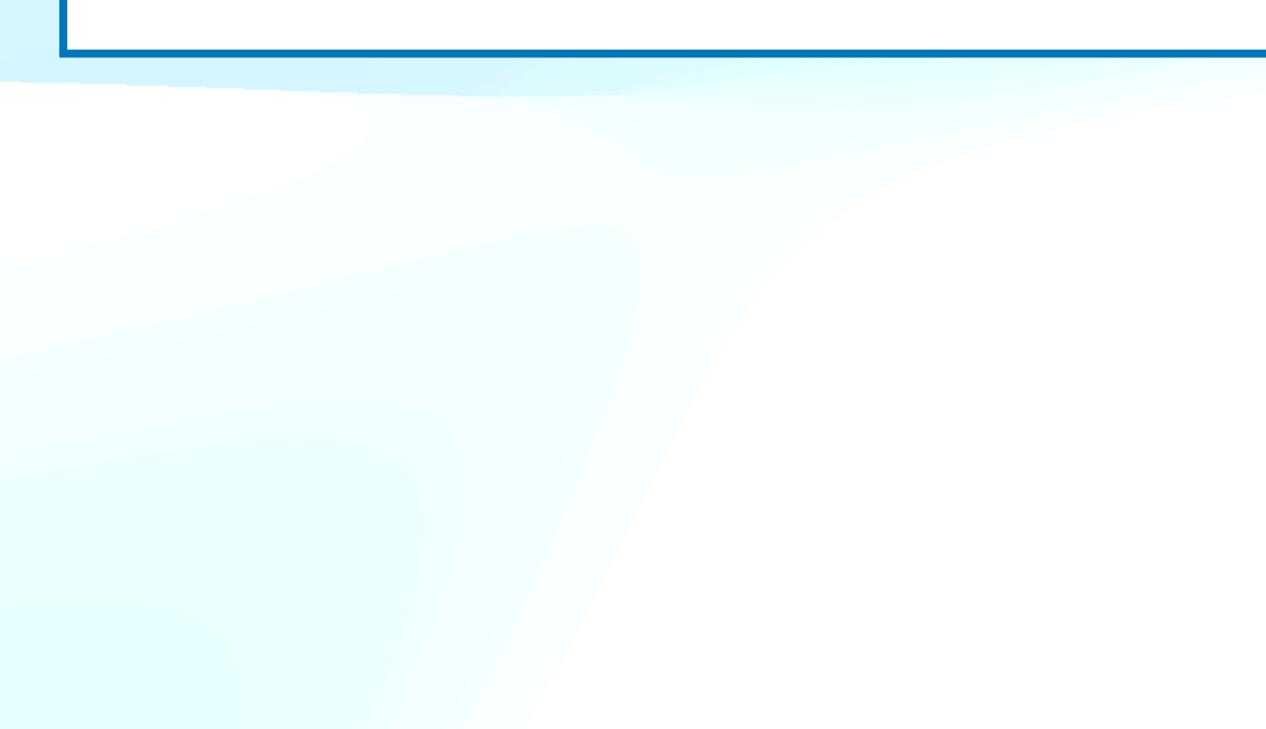
... instead of pulling back the metric, they minimize energy of curves.

$$p \quad \text{Energy}[c] = \sum_{t} ||p_{t+1} - p_t||^2$$

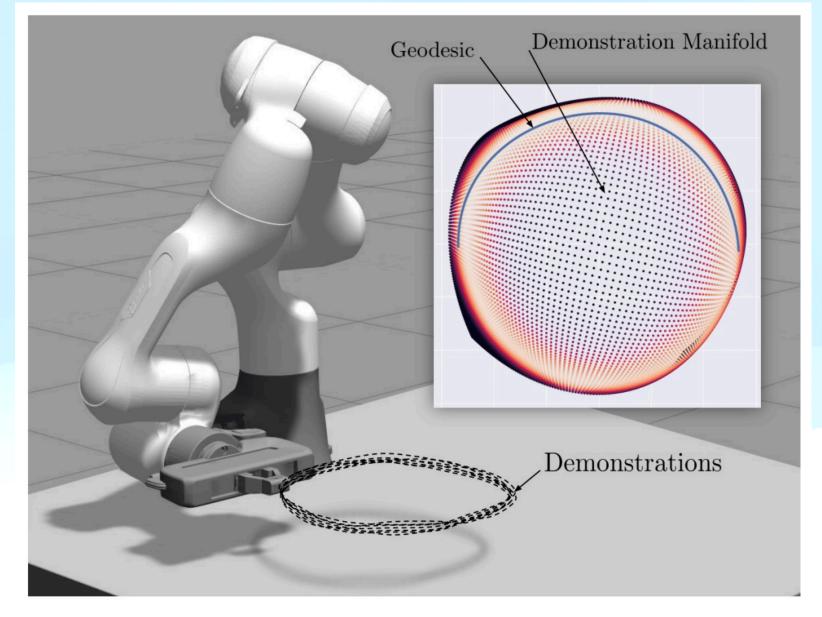


ntations of protein

Latent space geometries have been applied to motion synthesis and protein modeling



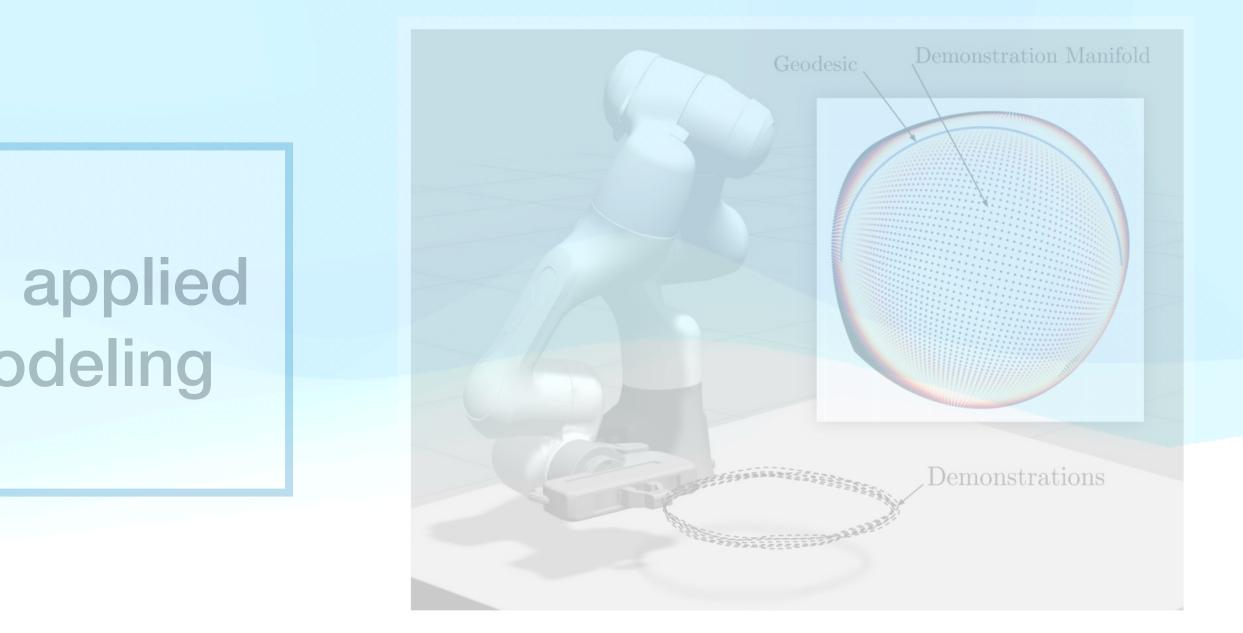
Summary of applications



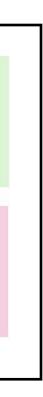
Latent space geometries have been applied to motion synthesis and protein modeling

Each choice of likelihood forces us to compute new pullback metrics.

Summary of applications

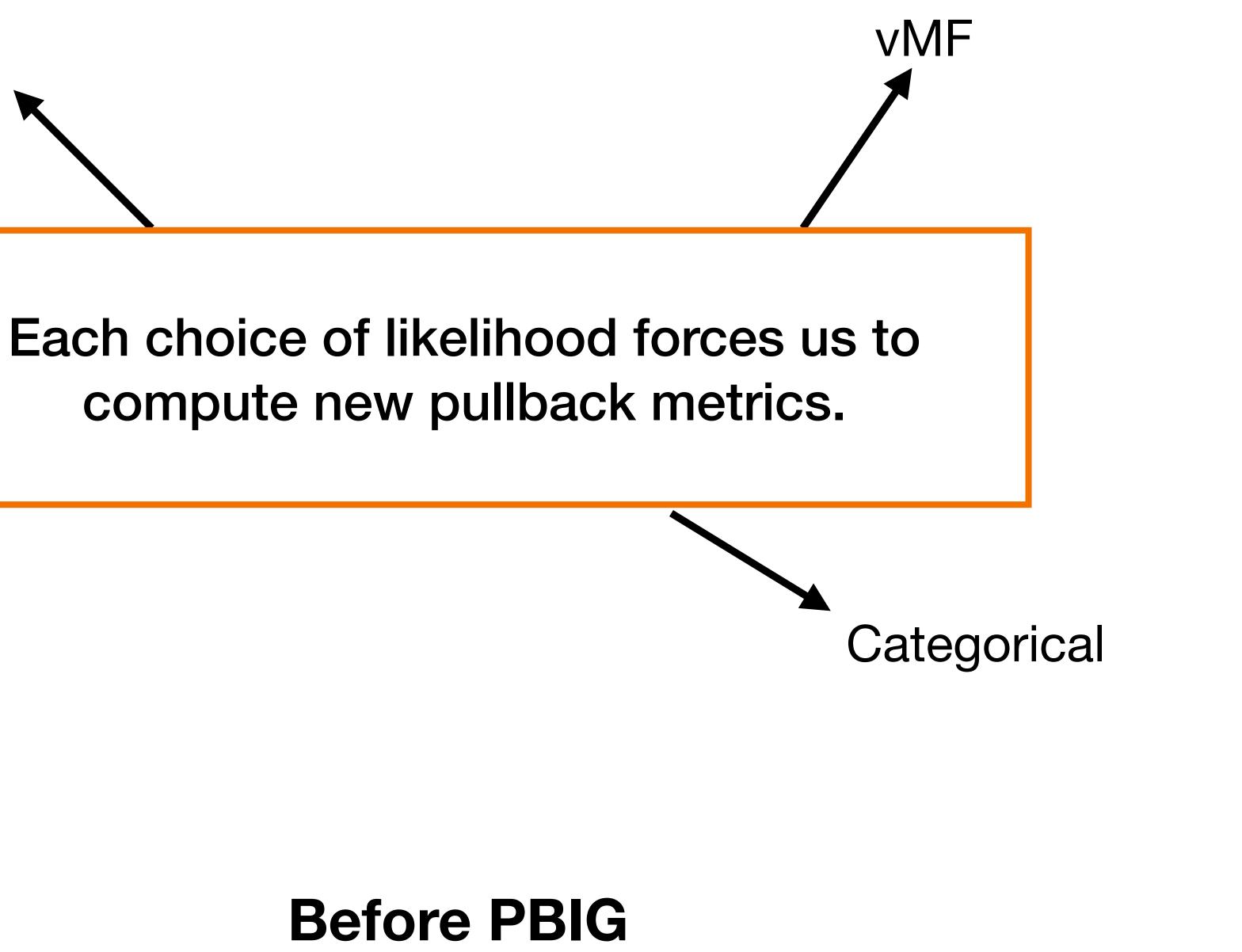


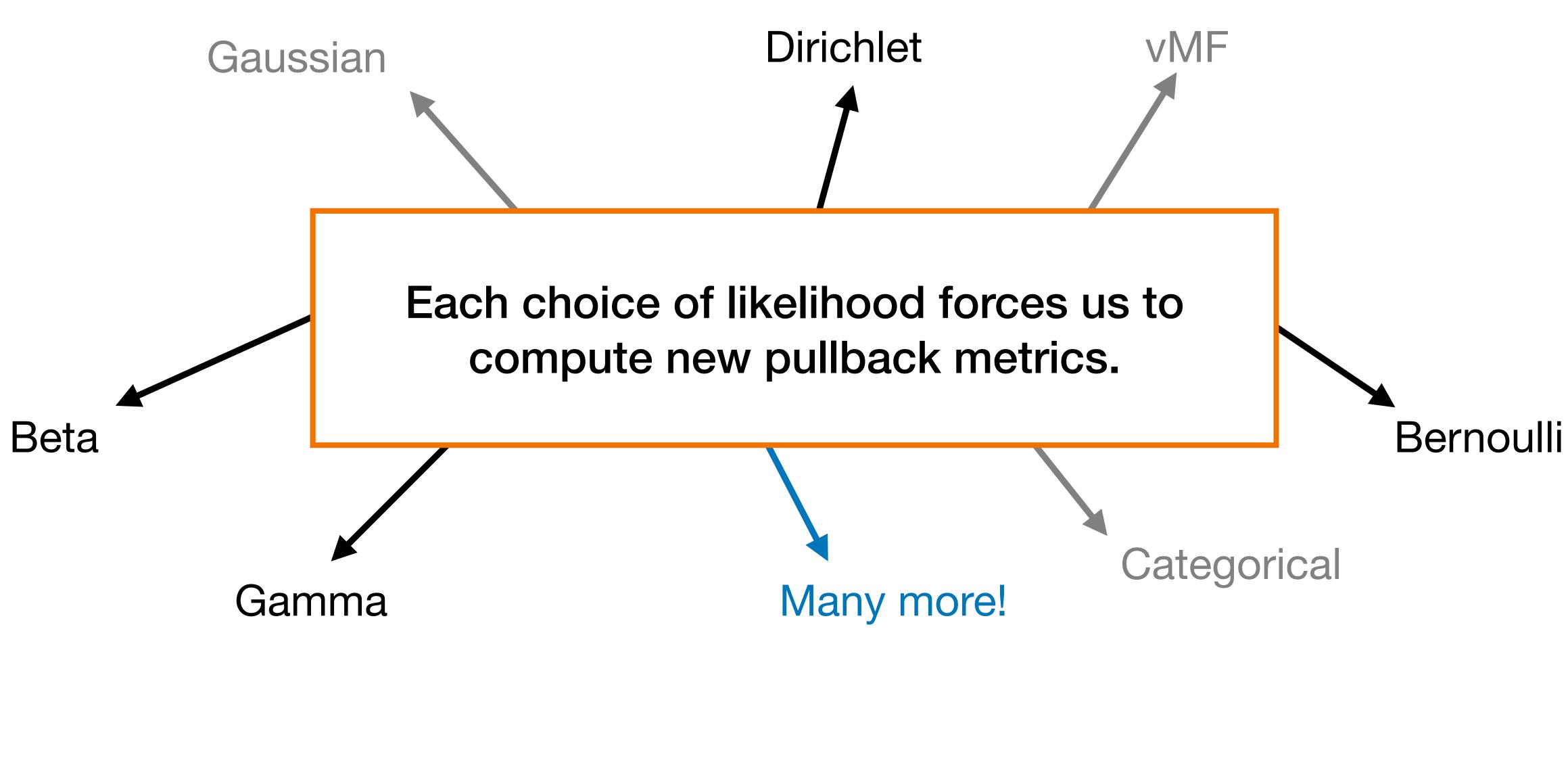
 $J^p_{\mu}(z)^{\mathsf{T}} J^p_{\mu}(z) + J^p_{\sigma}(z)^{\mathsf{T}} J^p_{\sigma}(z)$ $+J_{\mu}^{r}(z)^{\mathsf{T}}J_{\mu}^{r}(z) + J_{\kappa}^{r}(z)^{\mathsf{T}}J_{\kappa}^{r}(z)$



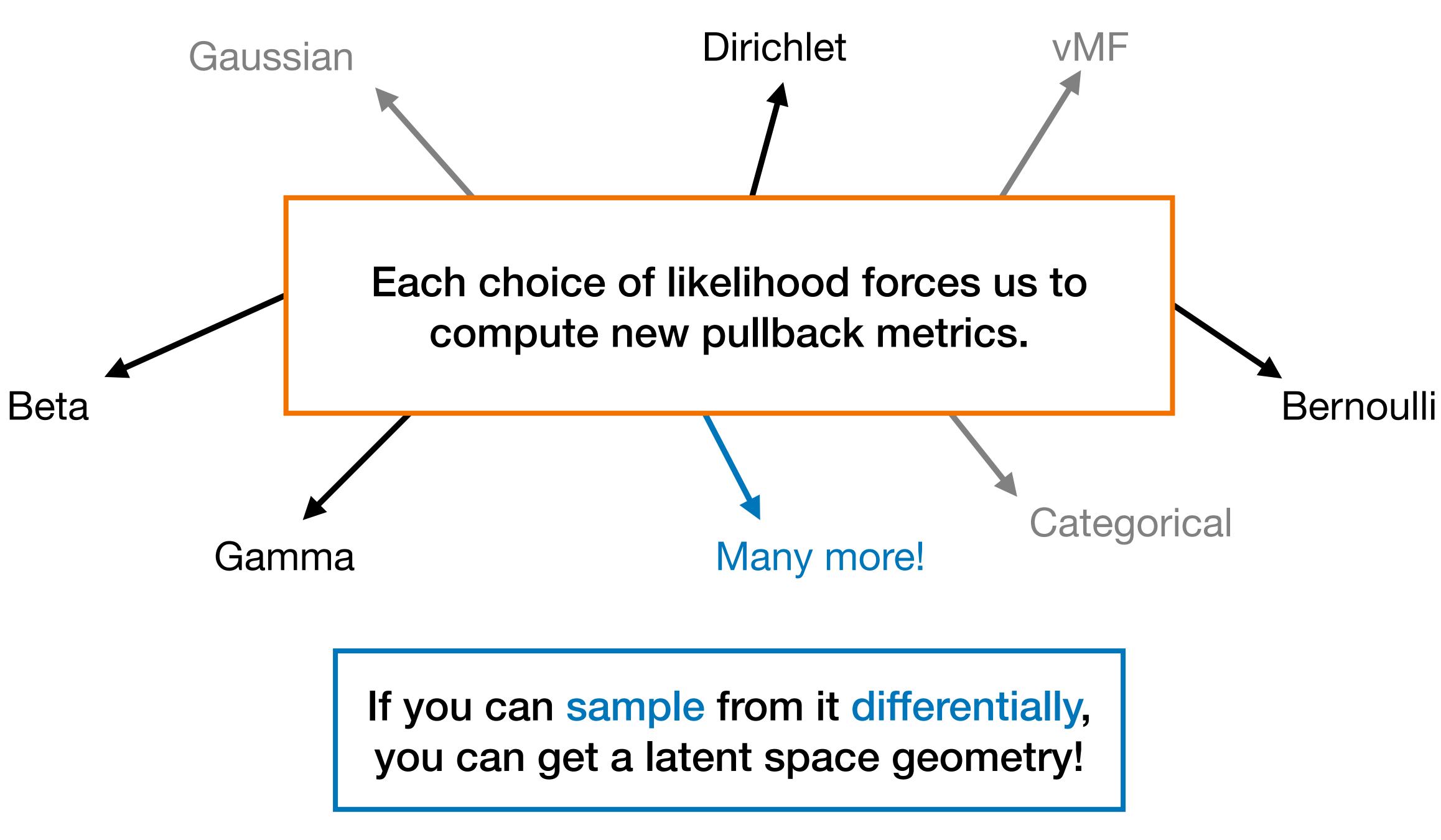
Pulling back information geometry

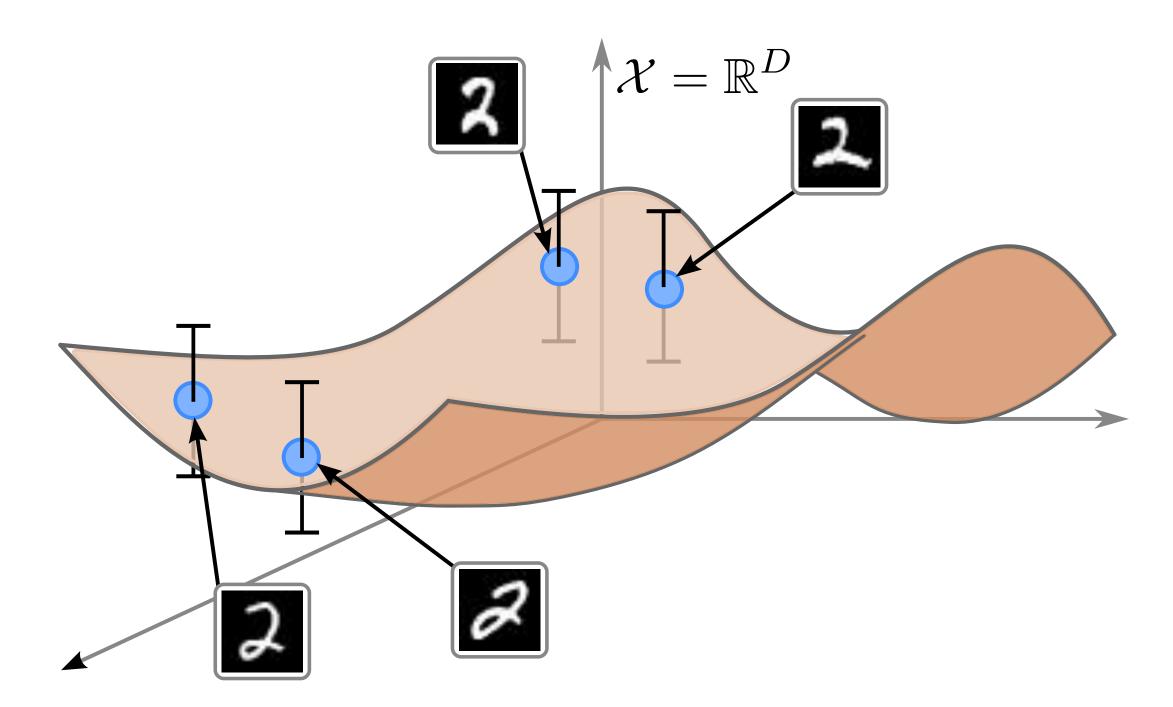
Gaussian





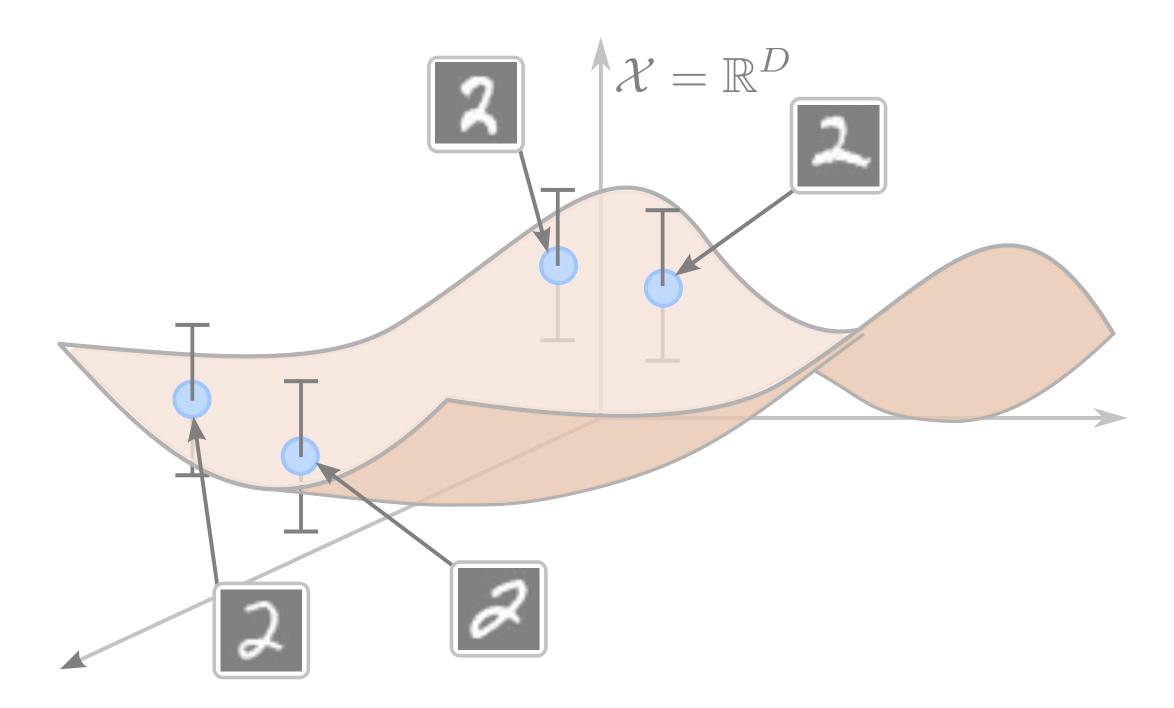
After PBIG



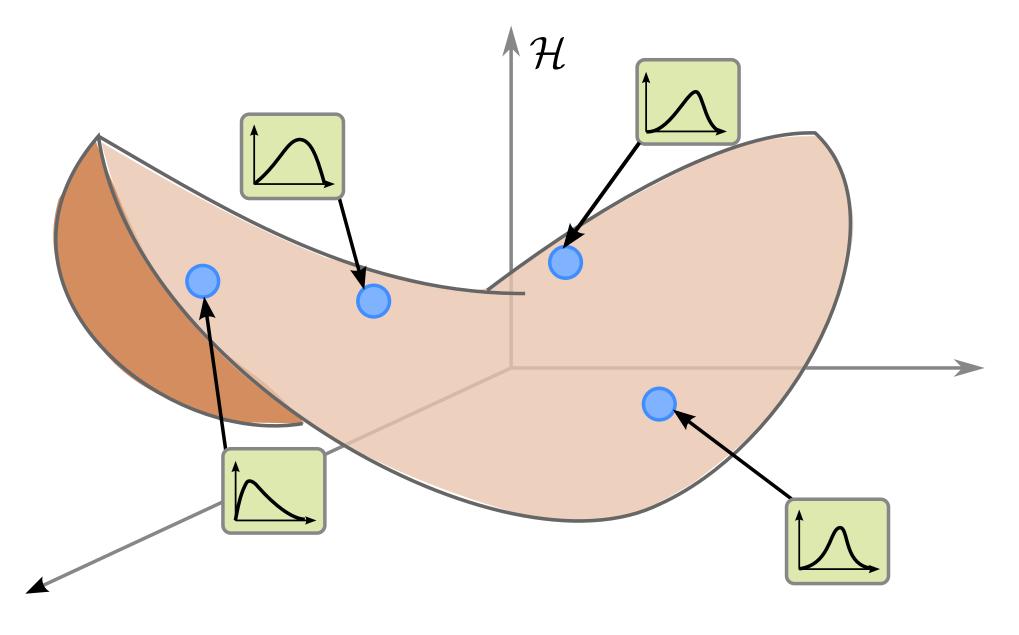


In all these applications, we decoded to data space.

How?



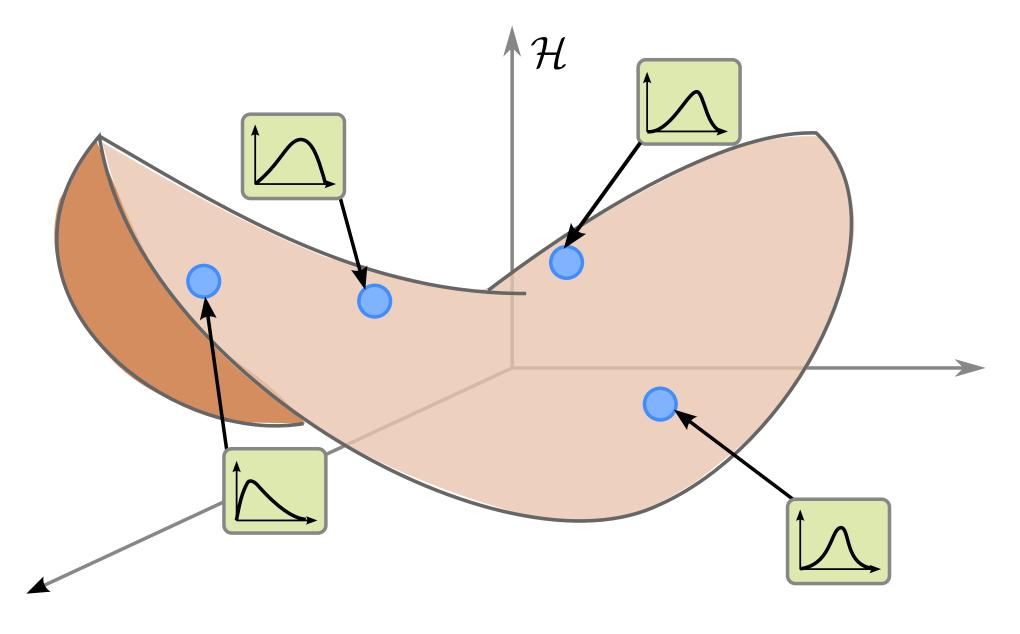
In all these applications, we decoded to data space.



What if we decode to parameter space?

Def. Given a distribution $p(x | \eta)$, we define its statistical manifold

 $(\mathcal{H}, I_{\mathcal{H}})$

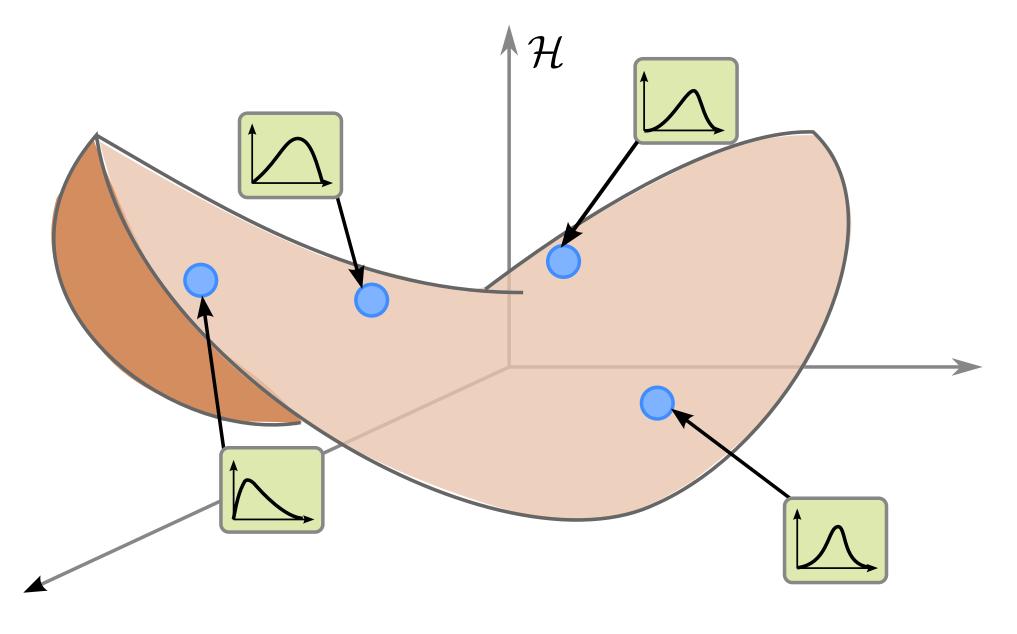


What if we decode to parameter space?

Def. Given a distribution $p(x \mid \eta)$, we define its statistical manifold

 $(\mathcal{H}, I_{\mathcal{H}})$ Set of parameters

Fisher Information Matrix (i.e. Fisher-Rao metric)



What if we decode to parameter space?

How?

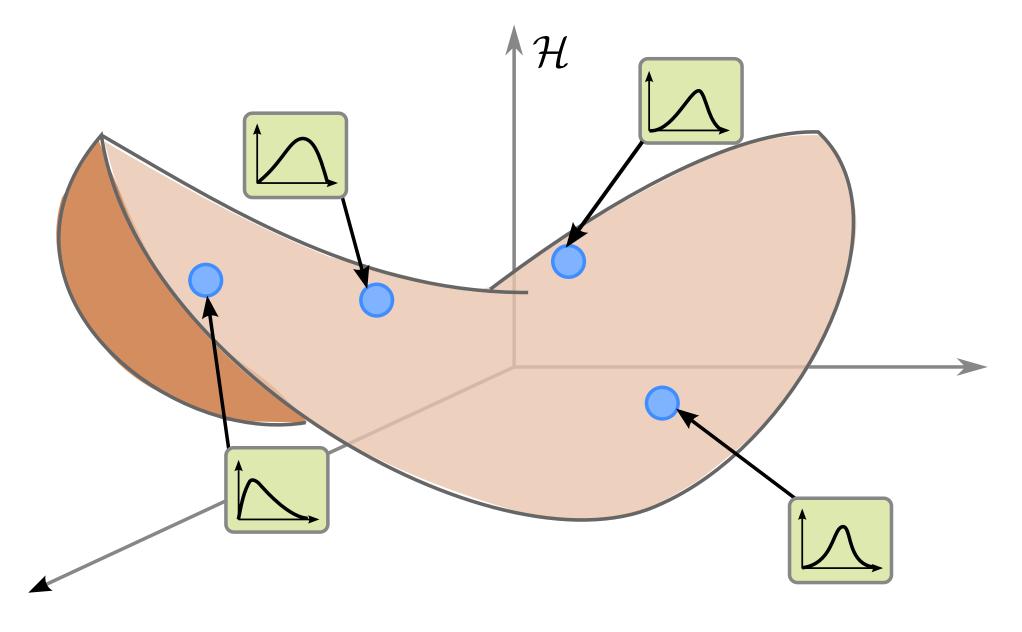
Def. Given a distribution $p(x | \eta)$, we define its statistical manifold

 $(\mathcal{H}, I_{\mathcal{H}})$

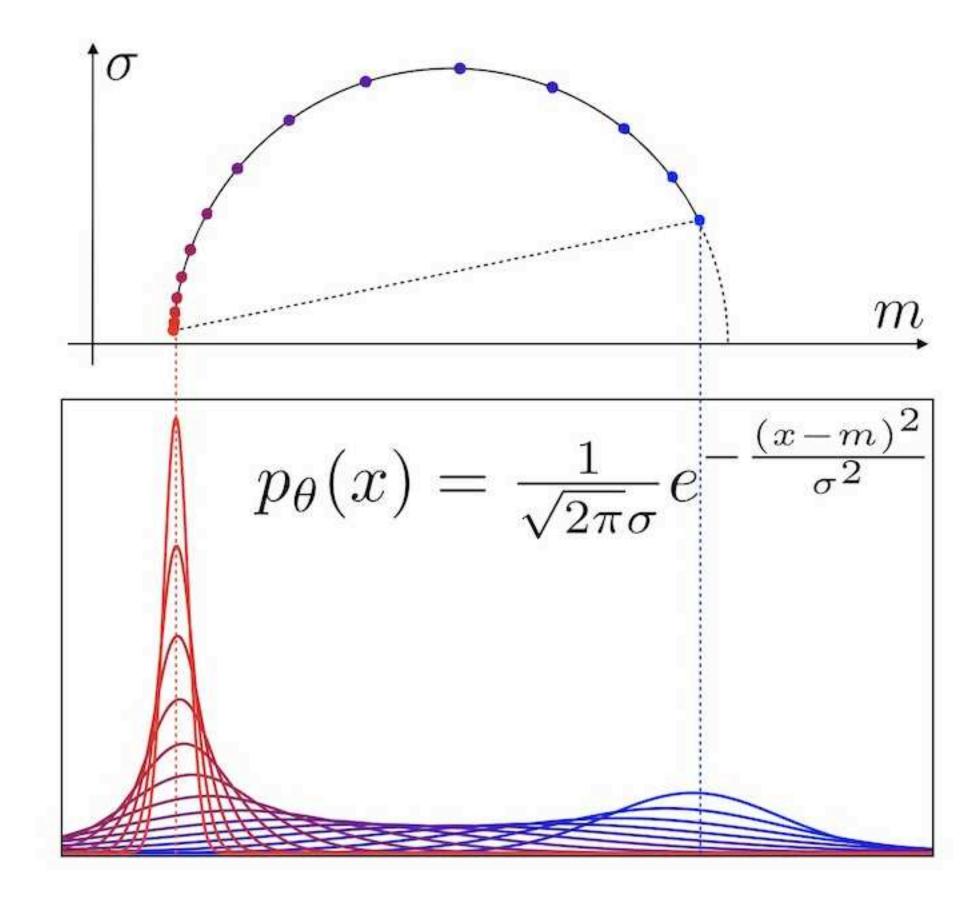
Set of parameters

Fisher Information MatrixWhat if we decode to
parameter space?(i.e. Fisher-Rao metric)parameter space?

$$I_{\mathcal{H}}(\eta) = \int_{\mathcal{X}} \left[\nabla_{\eta} \log p(x) \right]$$



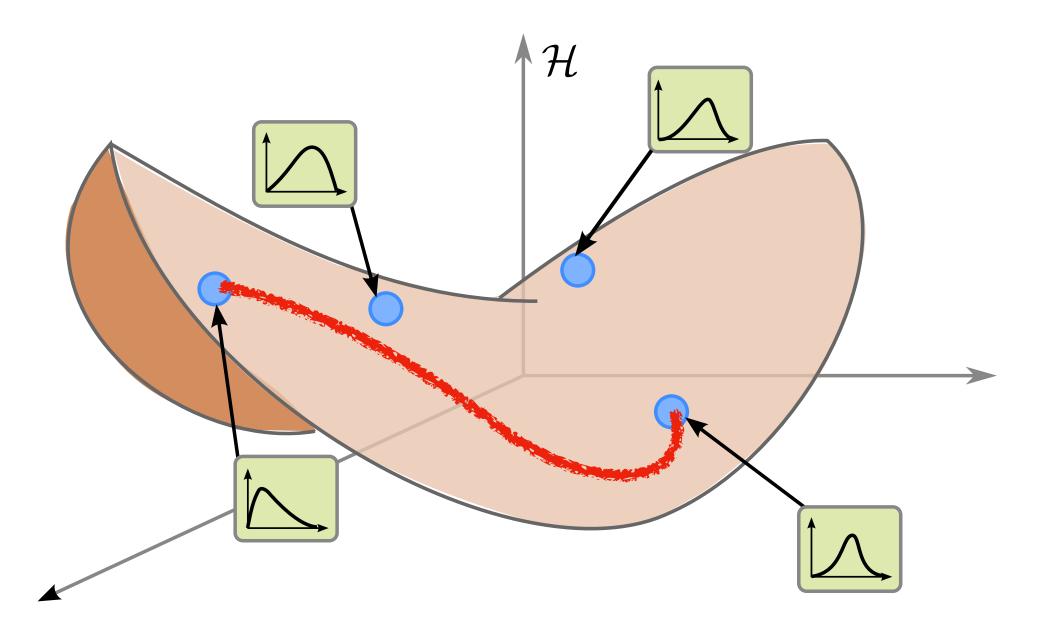
 $x | \eta \rangle \nabla_{\eta} \log p(x | \eta)^{\mathsf{T}}] p(x | \eta) \mathrm{d}x.$



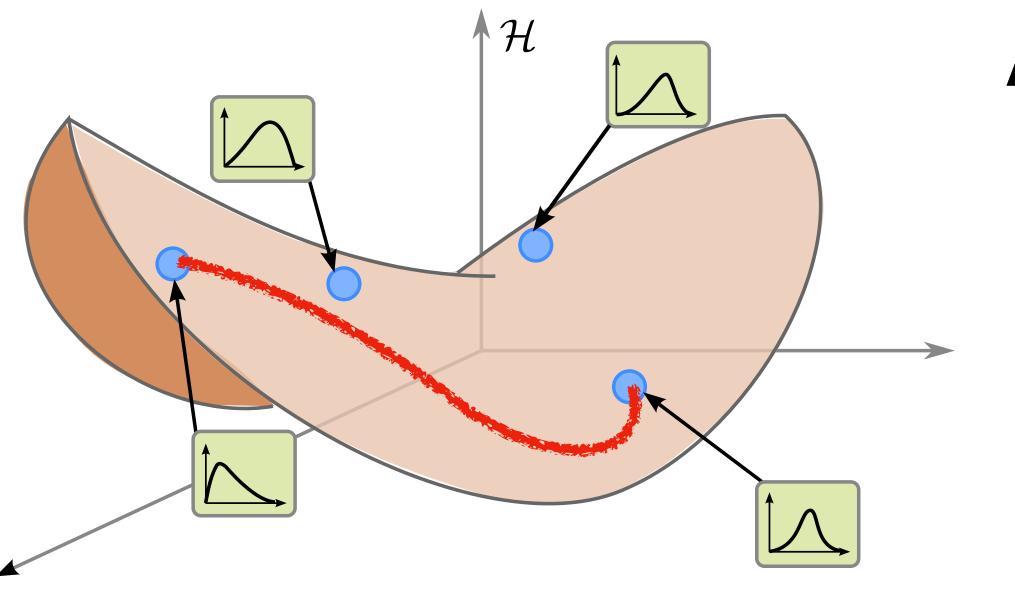
Gabriel Peyré @gabrielpeyre

For the univariate Gaussian $\mathcal{H} = \{(\mu, \sigma) : \mu \in \mathbb{R}, \sigma \in \mathbb{R}^+\}$

An example



Q: How do we pull back the Fisher-Rao metric?

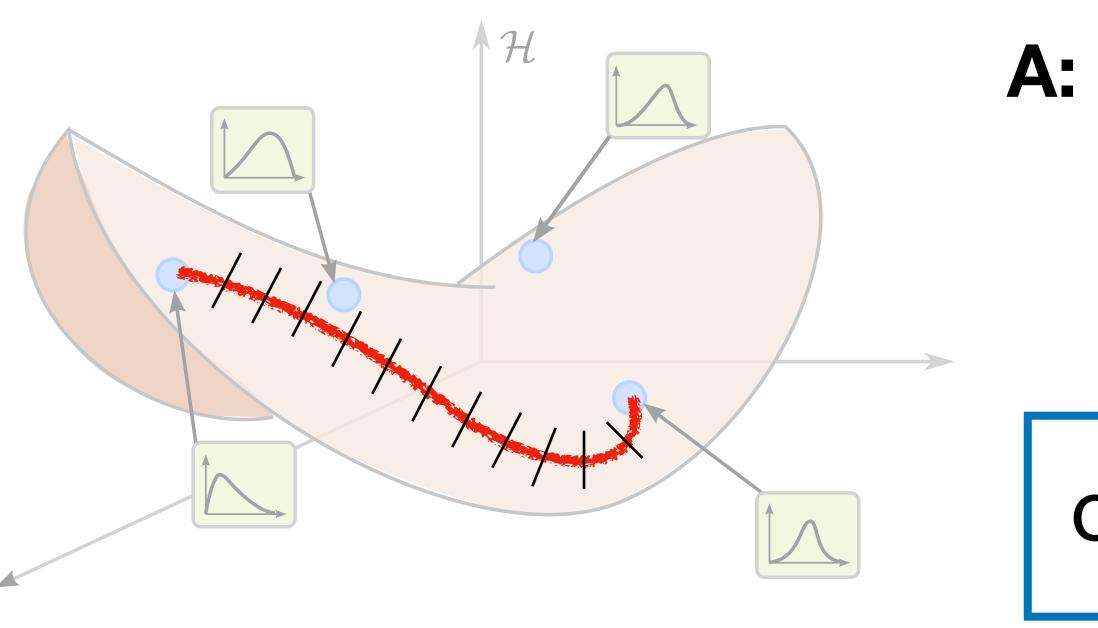


A:

Q: How do we pull back the Fisher-Rao metric?

Proposition 3.1. The Fisher-Rao metric is the second order approximation of the KL-divergence between perturbed distributions:

$$\mathrm{KL}(p(\mathbf{x}|\eta), p(\mathbf{x}|\eta + \delta\eta)) = \frac{1}{2}\delta\eta^{\mathsf{T}}\mathbf{I}_{\mathcal{H}}(\eta)\delta\eta + o(\delta\eta^2).$$
(8)



Ene

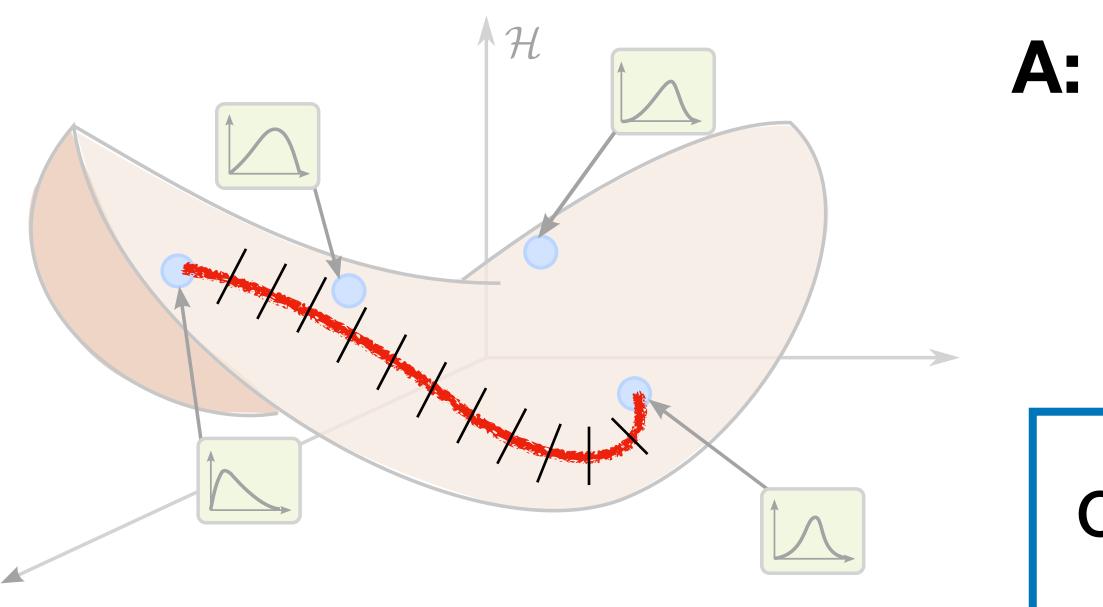
Q: How do we pull back the Fisher-Rao metric?

Proposition 3.1. The Fisher-Rao metric is the second order approximation of the KL-divergence between perturbed distributions:

$$\mathrm{KL}(p(\mathbf{x}|\eta), p(\mathbf{x}|\eta + \delta\eta)) = \frac{1}{2}\delta\eta^{\mathsf{T}}\mathbf{I}_{\mathcal{H}}(\eta)\delta\eta + o(\delta\eta^2).$$
(8)

Computing local KL divergences is enough!

$$\operatorname{ergy}[c] \propto \lim_{N \to \infty} \sum_{n=1}^{N-1} \operatorname{KL}(p(x \mid c(t_n)), p(x \mid c(t_{n+1})))$$



Easily minimized using e.g. torch

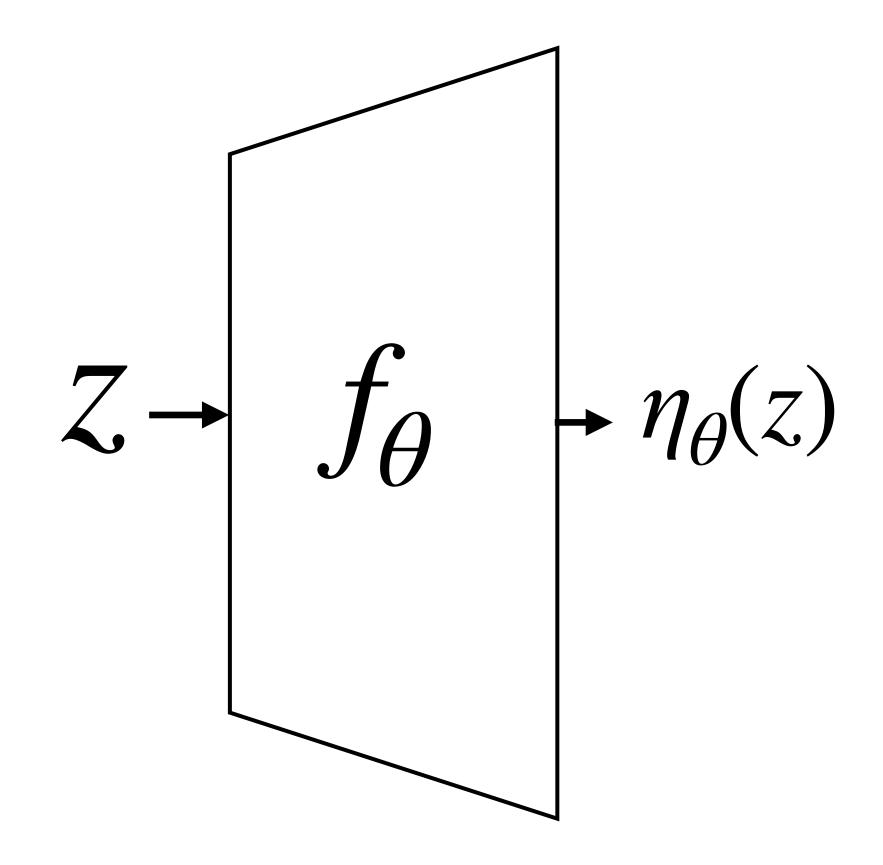
Q: How do we pull back the Fisher-Rao metric?

Proposition 3.1. The Fisher-Rao metric is the second order approximation of the KL-divergence between perturbed distributions:

$$\mathrm{KL}(p(\mathbf{x}|\eta), p(\mathbf{x}|\eta + \delta\eta)) = \frac{1}{2}\delta\eta^{\mathsf{T}}\mathbf{I}_{\mathcal{H}}(\eta)\delta\eta + o(\delta\eta^2).$$
(8)

Computing local KL divergences is enough!

$$\mathsf{Energy}[c] \propto \lim_{N \to \infty} \sum_{n=1}^{N-1} \mathsf{KL}(p(x \mid c(t_n)), p(x \mid c(t_{n+1})))$$

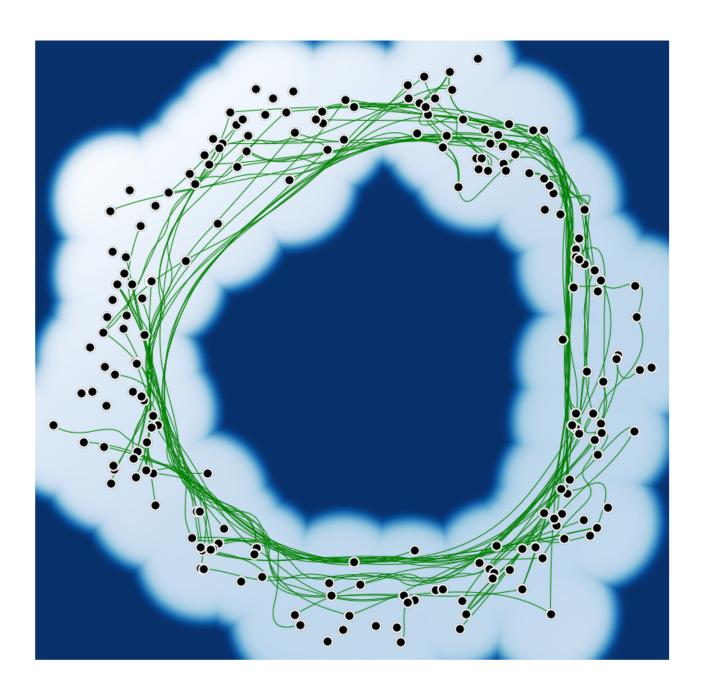


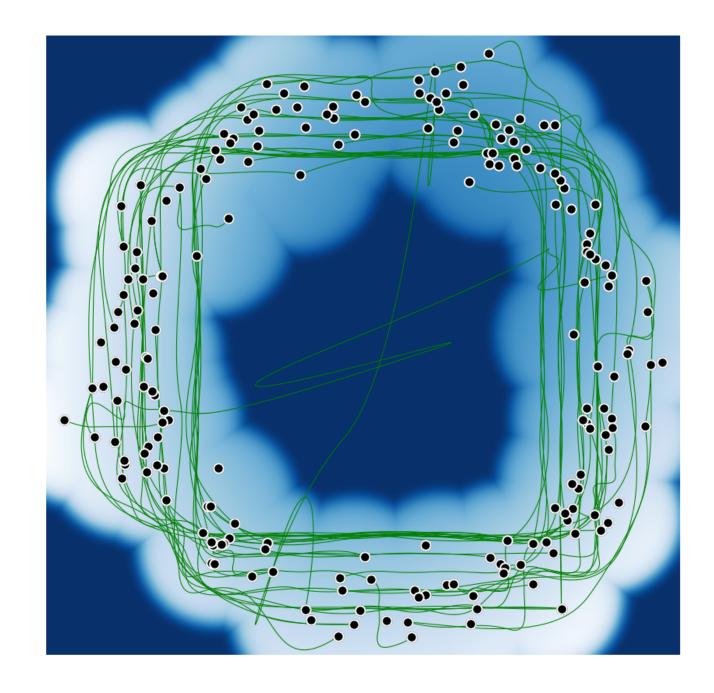
We pull back the Fisher-Rao for

- Normal
- Bernoulli
- Beta

- Dirichlet
- Exponential

A toy experiment

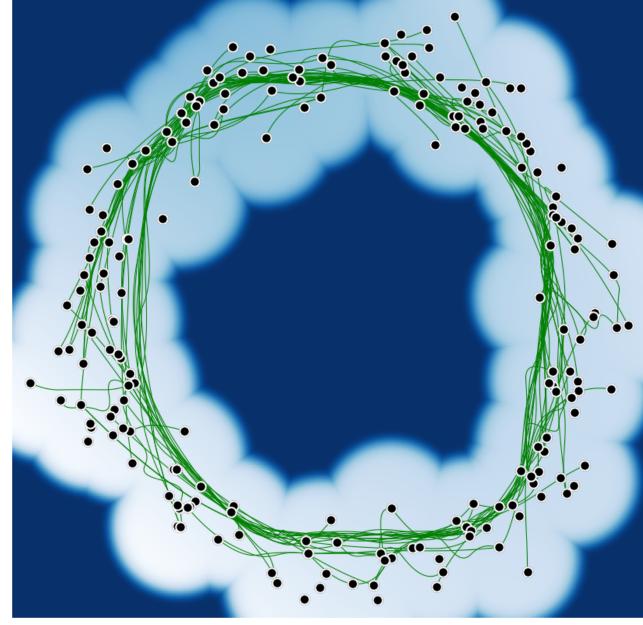




Beta

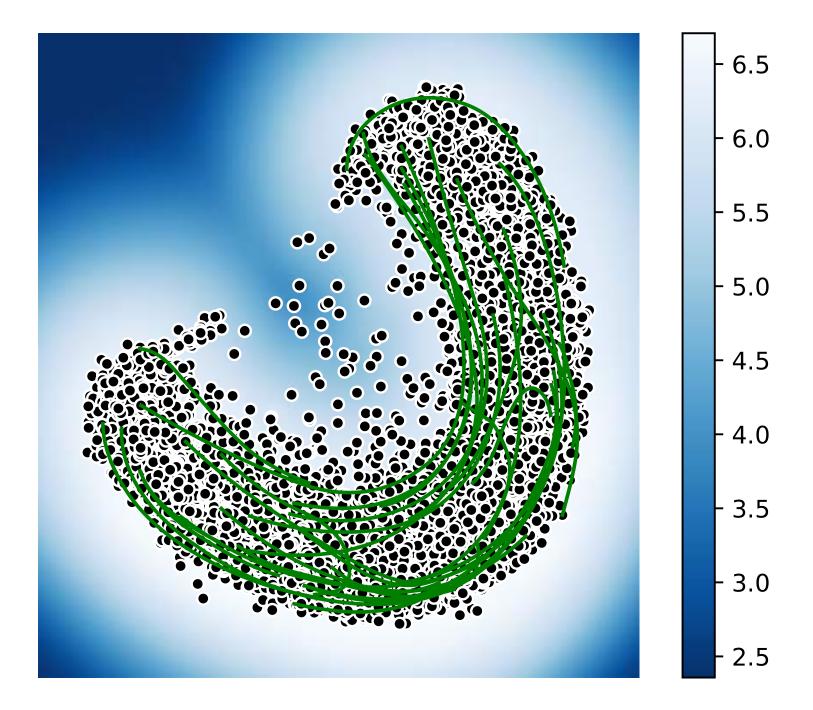
A toy experiment

Bernoulli



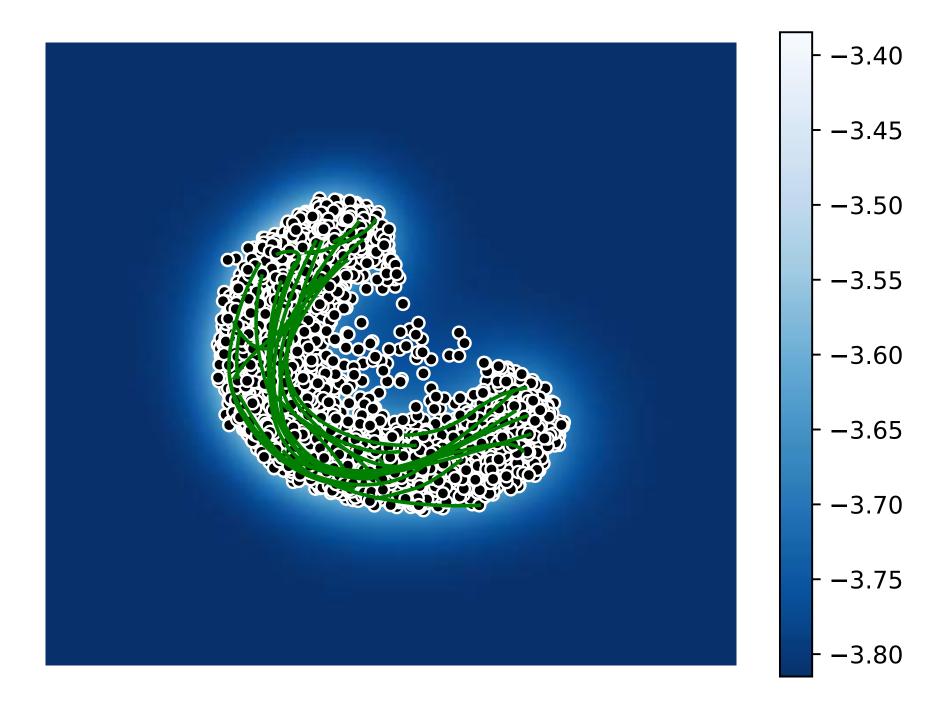
Dirichlet

LATENT SPACE ODDITY

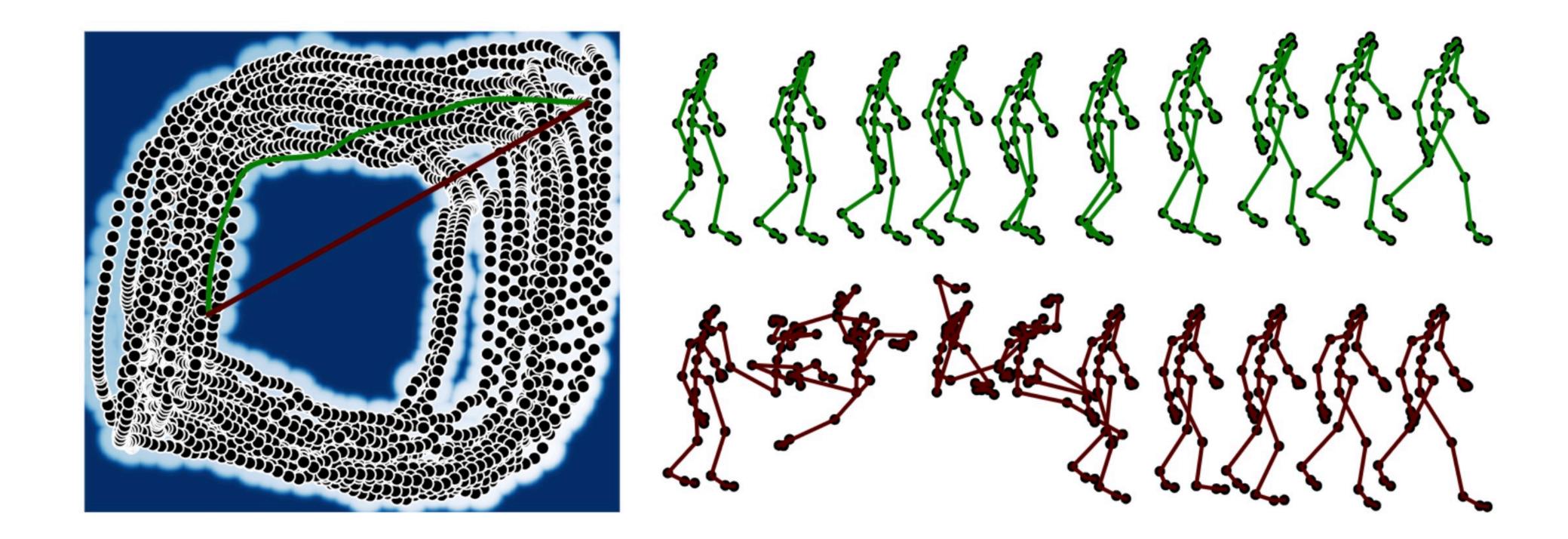


Comparing against Latent Space Oddity

Pulling back information geometry



Decoding to a Gaussian on MNIST(1)



On human poses

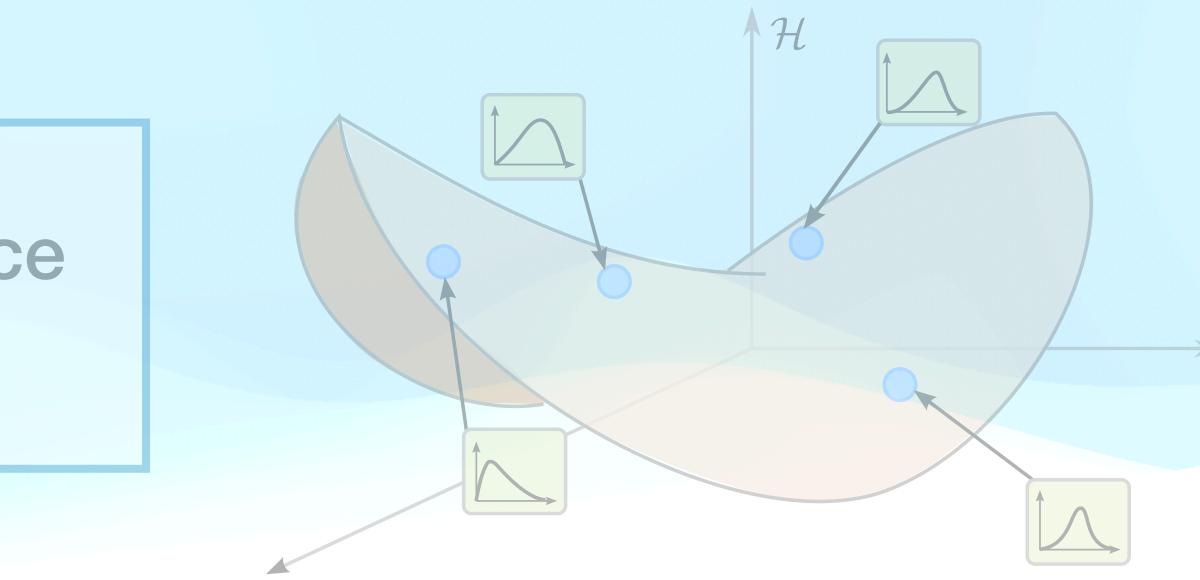
Human poses live on $\mathbb{T}^n = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1$ (product of vMF)

Summary \mathcal{H} \checkmark We consider parameter space instead of data space

We consider parameter space instead of data space

This allows us to define black box latent geometries

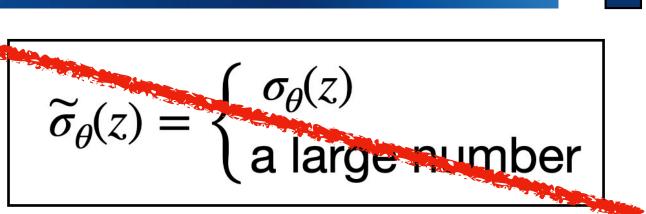
Summary

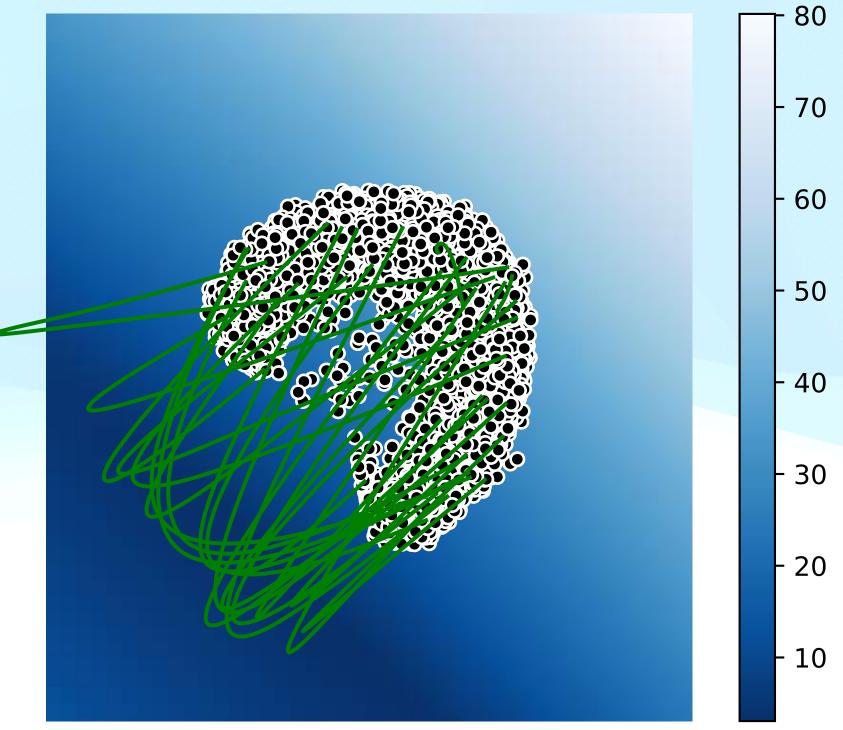


N–1 $\mathsf{KL}(p(x \,|\, c(t_n)), p(x \,|\, c(t_{n+1})))$ n=1

Good uncertainty quantification is vital for latent geometries

Outlook - open problems

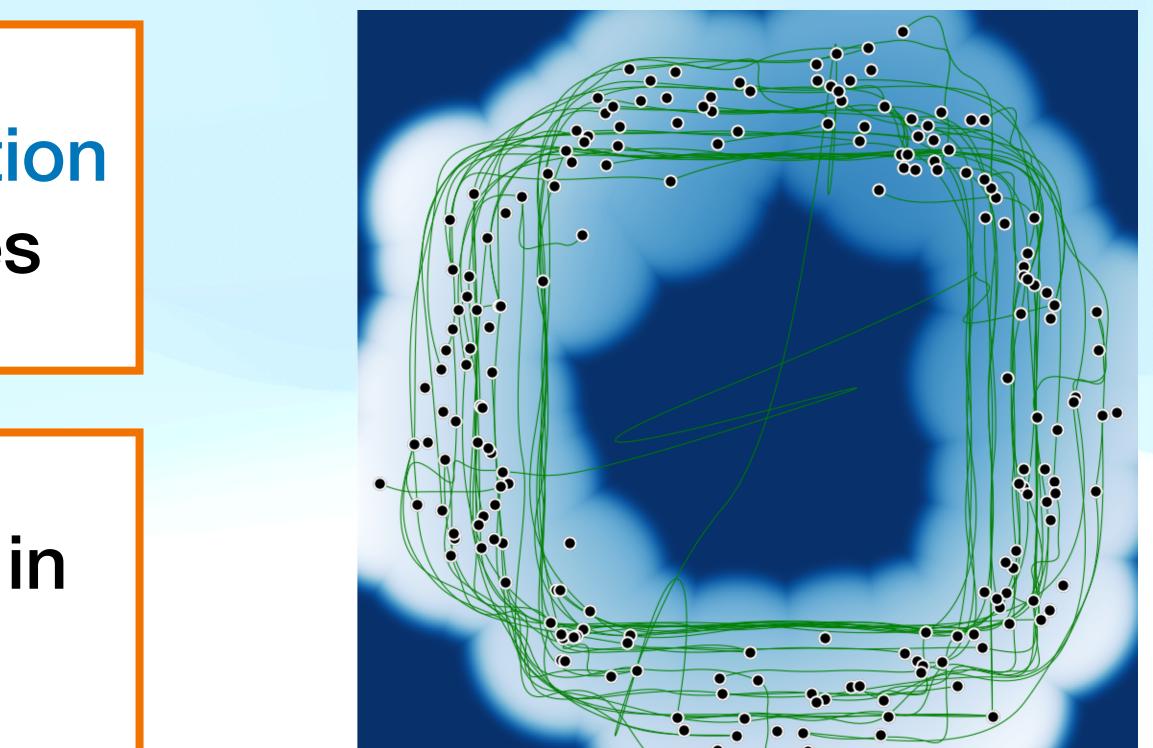




Good uncertainty quantification is vital for latent geometries

What does uncertain mean in other distributions?

Outlook - open problems



Thanks! Any questions?